
Computer Science Review 46 (2022) 100513

l

h
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Building blocks of sharding blockchain systems: Concepts, approaches,
and open problems
Yizhong Liu a, Jianwei Liu a, Marcos Antonio Vaz Salles d,1, Zongyang Zhang a,∗, Tong Li a,
Bin Hu a, Fritz Henglein b, Rongxing Lu c

a School of Cyber Science and Technology, Beihang University, Beijing, China
b Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
c Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
d Independent Researcher

a r t i c l e i n f o

Article history:
Received 13 February 2021
Received in revised form 21 May 2022
Accepted 27 September 2022
Available online 19 October 2022

Keywords:
Sharding blockchain
Byzantine Fault Tolerance
Scalability
Throughput
Consensus
Modular decomposition

a b s t r a c t

Sharding is the prevalent approach to breaking the trilemma of simultaneously achieving decen-
tralization, security, and scalability in traditional blockchain systems, which are implemented as
replicated state machines relying on atomic broadcast for consensus on an immutable chain of valid
transactions. Sharding is to be understood broadly as techniques for dynamically partitioning nodes
in a blockchain system into subsets (shards) that perform storage, communication, and computation
tasks without fine-grained synchronization with each other. Despite much recent research on sharding
blockchains, much remains to be explored in the design space of these systems. Towards that aim,
we conduct a systematic analysis of existing sharding blockchain systems and derive a conceptual
decomposition of their architecture into functional components and the underlying assumptions about
system models and attackers they are built on. The functional components identified are node selection,
epoch randomness, node assignment, intra-shard consensus, cross-shard transaction processing, shard
reconfiguration, and motivation mechanism. We describe interfaces, functionality, and properties of
each component and show how they compose into a sharding blockchain system. For each component,
we systematically review existing approaches, identify potential and open problems, and propose
future research directions. We focus on potential security attacks and performance problems, including
system throughput and latency concerns such as confirmation delays. We believe our modular
architectural decomposition and in-depth analysis of each component, based on a comprehensive
literature study, provides a systematic basis for conceptualizing state-of-the-art sharding blockchain
systems, proving or improving security and performance properties of components, and developing
new sharding blockchain system designs.

© 2022 Elsevier Inc. All rights reserved.

Contents

1. Introduction... 3
1.1. Our contributions... 4
1.2. Paper organization ... 4

2. Preliminaries ... 4
2.1. Background ... 4

2.1.1. Blockchain consensus .. 4
2.1.2. Sharding blockchains ... 5

2.2. Notations... 7
2.3. Definitions .. 7

2.3.1. Network model... 7
2.3.2. Adversary model .. 8

∗ Corresponding author.
E-mail addresses: liuyizhong@buaa.edu.cn (Y. Liu), liujianwei@buaa.edu.cn (J. Liu), msalles@acm.org (M.A. Vaz Salles), zongyangzhang@buaa.edu.cn (Z. Zhang),

eetong@buaa.edu.cn (T. Li), hubin0205@buaa.edu.cn (B. Hu), henglein@di.ku.dk (F. Henglein), rlu1@unb.ca (R. Lu).
1 Work was performed while the author was at the University of Copenhagen.
ttps://doi.org/10.1016/j.cosrev.2022.100513
574-0137/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cosrev.2022.100513
https://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2022.100513&domain=pdf
mailto:liuyizhong@buaa.edu.cn
mailto:liujianwei@buaa.edu.cn
mailto:msalles@acm.org
mailto:zongyangzhang@buaa.edu.cn
mailto:leetong@buaa.edu.cn
mailto:hubin0205@buaa.edu.cn
mailto:henglein@di.ku.dk
mailto:rlu1@unb.ca
https://doi.org/10.1016/j.cosrev.2022.100513

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
2.3.3. Transaction model.. 9
2.3.4. Intra-shard consensus.. 9
2.3.5. Sharding blockchains ... 10

3. Decomposing sharding blockchains into functional components .. 11
3.1. Decomposition of sharding blockchains ... 11

3.1.1. Node selection .. 12
3.1.2. Epoch randomness ... 13
3.1.3. Node assignment .. 13
3.1.4. Intra-shard consensus.. 13
3.1.5. Cross-shard transaction processing.. 13
3.1.6. Shard reconfiguration .. 14
3.1.7. Motivation mechanism .. 14

3.2. Composing separate components into sharding blockchain systems ... 14
3.2.1. General methods to compose a sharding blockchain system... 14
3.2.2. Distinct combinations of system models and components .. 14
3.2.3. Instantiation of composing components into a sharding blockchain system... 16

3.3. Summary... 16
4. Node selection .. 16

4.1. Basic concepts .. 16
4.2. Existing approaches ... 18

4.2.1. PoW-based node selection .. 18
4.2.2. PoS-based node selection .. 19
4.2.3. CA-based node selection ... 19

4.3. Problems and future directions.. 19
4.3.1. PoW-based node selection .. 19
4.3.2. PoS-based node selection .. 20

5. Epoch randomness ... 21
5.1. Basic concepts .. 21
5.2. Existing approaches ... 22

5.2.1. VRF ... 22
5.2.2. Threshold signature ... 22
5.2.3. PVSS ... 22
5.2.4. Hash functions .. 22
5.2.5. VDF... 22
5.2.6. Others .. 23

5.3. Comparison of distributed random beacon protocols ... 23
5.3.1. Network model... 23
5.3.2. Randomness properties ... 23
5.3.3. Complexity evaluation ... 23

5.4. Problems and future directions.. 25
5.4.1. Security requirements ... 25
5.4.2. Performance improvements .. 25
5.4.3. Formal security analysis .. 25

6. Node assignment .. 25
6.1. Basic concepts .. 25
6.2. Existing approaches ... 25

6.2.1. Binomial distribution ... 25
6.2.2. Hypergeometric distribution... 26
6.2.3. Other distribution... 26

6.3. Problems and future directions.. 26
6.3.1. The analysis from A to B is ignored .. 26
6.3.2. The infinite pool assumption is not accurate ... 26
6.3.3. The failure rate with cumulative hypergeometric distribution is imprecise .. 26

7. Intra-shard consensus .. 26
7.1. Basic concepts .. 26
7.2. Existing approaches ... 27

7.2.1. Strong consistency ... 27
7.2.2. Weak consistency... 30

7.3. Problems and future directions.. 30
7.3.1. Instant sharding blockchains .. 30
7.3.2. Eventual sharding blockchains ... 31

8. Cross-shard transaction processing .. 31
8.1. Basic concepts .. 31
8.2. Existing approaches ... 31

8.2.1. Two-phase commit based approaches... 31
8.2.2. Transaction split based approaches ... 32
8.2.3. Relay transaction based approaches .. 32

8.3. Problems and future directions.. 33
8.3.1. Two-phase commit based approaches... 33
8.3.2. Transaction split based approaches ... 34
8.3.3. Relay transaction based approaches .. 34
2

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

t
r
e
c
r
e
t
i
r
p
a
T
i
h
T
i
t

d
r
t
b
p
t
p
d
z
d
c

‘

9. Shard reconfiguration .. 35
9.1. Basic concepts .. 35
9.2. Existing approaches ... 35

9.2.1. Reconfiguration through random replacement .. 35
9.2.2. Reconfiguration under specific rules ... 35

9.3. Problems and future directions.. 36
9.3.1. Quantitative analysis of the corruption parameter τ .. 36
9.3.2. Bootstrapping of new joined members ... 36
9.3.3. Security analysis of new committees .. 36
9.3.4. Initial setup of the protocol .. 36

10. Motivation mechanism .. 37
10.1. Basic concepts .. 37
10.2. Existing approaches ... 37

10.2.1. Rewards for block producers and leaders... 37
10.2.2. Penalties for negative behaviors .. 37
10.2.3. Rewards based on reputation ... 37

10.3. Problems and future directions.. 38
10.3.1. Specific considerations for sharding blockchains ... 38
10.3.2. Detailed analysis of the motivation mechanism .. 38

11. Related work ... 38
11.1. Survey on sharding blockchain systems ... 38
11.2. Modular analysis of sharding blockchains.. 38
11.3. Blockchain consensus .. 38
11.4. Blockchain scalability .. 38

12. Conclusion ... 38
CRediT authorship contribution statement ... 39
Declaration of competing interest.. 39
Acknowledgments .. 39
References ... 39
1. Introduction

A traditional blockchain system is a peer-to-peer (P2P) dis-
ributed system with decentralized governance. It implements a
eplicated state machine that relies on an atomic broadcast (total
vent order consensus) protocol for consensus on an immutable
hain (sequence) of valid transactions. A transaction can be any
ecord of data but is usually a digitally signed statement that
xpresses a transfer of ownership of a digital resource (asset). In
he seminal and paradigmatic Bitcoin system [1],2 a transaction
s a cryptographically signed transfer of a built-in synthetic cur-
ency, Bitcoin, by and to anonymous parties identified only by
ublic keys they themselves have generated. Any node can join
nd leave the P2P network at any time, without authentication.
he nodes receive transactions submitted by clients, collect them
nto blocks of valid transactions, and compete with other nodes to
ave their block extend the currently longest chain of such blocks.
he node operators are incentivized to do this by receiving a fee,
n Bitcoin, whenever their block is the consensual continuation to
he currently longest chain.3

An idealized blockchain system strives for the combination of
ecentralized control (no single party has an a priori privileged
ole), consensus on a single state (‘‘single source of truth’’),
amper-proof recording (validated transactions cannot feasibly
e deleted or updated ex post), once added to the blockchain),
rivacy preservation (publicly shared data, but secured and priva-
ized by cryptographic techniques such as cryptographic hashing,
rivate–public key cryptography, secret sharing for
igital signatures [2,3], immutable self-certifying pointers [4],
ero-knowledge proofs and more), and high availability (high
egree of replication on nodes controlled by independent, non-
olluding node operators) in an untrusted environment [5].

2 Where a blockchain is called chain of blocks; neither ‘‘blockchain’’ nor
‘block-chain’’ occur in the paper.
3 This is a simplified description with technical infelicities.
 a

3

Blockchain systems have tremendous application potential in
various fields, such as Internet of Things (IoT) [6,7], cloud comput-
ing [8,9] (with a trusted data center provider), smart cities [10],
finance [11–13] (with authenticated legal entities), self-sovereign
identity management,4 supply chain [14] and more.

Blockchain technology develops very rapidly, but faces both
fundamental and practical obstacles to wider applicability. The
most critical issue is the trilemma of decentralization, security,
and scalability. To achieve decentralization, solutions need to
support independent participants with varying assumptions on
how participants may join or leave a network, from permissioned
to permissionless blockchain systems [15].

As for security [16,17], a blockchain protocol has to be proved
secure [18,19] to ensure it resists certain classes of attacks that
may compromise its correct functioning vis a vis client.

For improved scalability, existing approaches can be classified
into off-chain and on-chain solutions [20]. The former employ a
hierarchical architecture, where the core blockchain system (on-
chain) only validates few aggregated resource transfers that are
the net effect of many fine-grained payments, which in turn are
managed separately in multiple unsynchronized subsystems. This
includes technologies such as micropayment [21,22], payment
channel networks [23,24], virtual payment channels [25], and
sidechains [26–28]. Conceptually, these solutions correspond to
a (full-reserve) banking system, where the central bank corre-
sponds to the core blockchain system, and the channels to pop-up
banks that have initially some accounts transferred from the cen-
tral bank, perform internal transactions without synchronization
with other banks, and eventually transfer the final balances back
to the central bank such that only the netted result is stored in
the blockchain. Off-chain solutions avoid the computational cost
of a traditional blockchain system, which requires each honest
node to receive, store and send all transactions and to come to
an agreement amongst all nodes on a total order of all valid
transactions.

4 Such as ESSIF, part of the European Blockchain Services Initiative, Sovrin or
number of Hyperledger identity management frameworks.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

n
v
a
c
b
d
t
w
T
a

i

Despite the applicability of off-chain solutions in some sce-
arios, on-chain solutions where all transactions are recorded,
alidated, and retained without netting, are desired in many other
pplication scenarios. A sharding blockchain system is an on-
hain solution that seeks to improve the scalability of a traditional
lockchain system while achieving the same level of security and
ecentralization. In a sharding blockchain system, the nodes in
he network are dynamically partitioned into shards (subsets),
here each shard is responsible for managing its own blockchain.
he basic idea is that, instead of storing a chain of transactions
nd replicating it across all nodes, an acyclic graph of transactions

is maintained, where each shard is only responsible for a specific
part of the graph. As new nodes join the network, the cumulative
transaction throughput can grow by increasing the number of
shards [29]. Sharding technology was pioneered for database
systems [30], where it describes methods for dynamically par-
titioning a database into parts, called shards, each managed by a
different node in a distributed system. The concept of partitioning
data and their management, including the term sharding, was
introduced to blockchain systems by ELASTICO [31].

The design and implementation of sharding blockchain sys-
tems currently suffer from a number of problems, however. First,
the structure of sharding blockchain systems is complicated; they
usually contain multiple key components,5 such as the method
for selecting shard members, the consensus algorithm inside a
shard, and the processing method for transactions. Second, dif-
ferent sharding blockchain systems may adopt different models,
such as network, adversary, and transaction models, without
making these explicit enough to assess their design and (security)
properties. These model assumptions engender a considerable set
of design choices, which need to be characterized and compared
in the context of their model assumptions. Third, most sharding
blockchain systems are presented as end-to-end systems, describ-
ing a specific point in a tremendous design space for blockchain
systems, without providing an architecture for exploring system-
atic modular design to rapidly and securely explore the design
space for sharding blockchain systems. In particular, the func-
tionality of components and their interfaces are not clear enough,
which leads to difficulties in exploring various alternative designs
for each component.

In this paper, we address these points: We provide a concep-
tual and technical framework for decomposing existing sharding
blockchain systems into key functional components and describe
a conceptual and technical modular architecture for composing
them into full sharding blockchain systems. Besides, we pro-
pose a taxonomy for sharding blockchain systems from the di-
mensions of system models and components. Furthermore, we
provide a systematic, in-depth analysis of each component, de-
scribing its input dependencies, functionality, and key properties.
For each component, we classify existing approaches and solu-
tions, identify open problems, and provide directions for future
research.

1.1. Our contributions

In summary, we make the following contributions in this
paper.
Decomposing sharding blockchains into functional compo-
nents. We decompose sharding blockchains into multiple func-
tional components: node selection, epoch randomness, node as-
signment, intra-shard consensus, cross-shard transaction pro-
cessing, shard reconfiguration, and motivation mechanism. For

5 We use the terms ‘‘functional component’’ and ‘‘building block’’
nterchangeably.
4

each component, we give its input, output, function, and prop-
erty to be satisfied. Furthermore, we show how to compose
these components into a complete sharding blockchain system.
The component decomposition provides a path to systematically
developing yet unexplored sharding blockchain system designs.
A detailed taxonomy for sharding blockchain systems. We
provide a taxonomy for sharding blockchain systems in two di-
mensions: system models and components. System models in-
clude network model, adversary model, and transaction model.
We divide each model into categories that correspond to dif-
ferent types of sharding blockchain systems, such as eventual
and instant sharding blockchain systems, or permissioned and
permissionless sharding blockchain systems. For each component
of a sharding blockchain system, we classify solutions according
to their principles and algorithms.
In-depth analysis of components. For each component of a
sharding blockchain system, we first give its basic concepts, in-
cluding its purpose, functionality, and essential procedures. We
summarize and categorize existing approaches according to their
underlying characteristics; the specific operational details of each
method are expounded from multiple perspectives. In addition,
we identify and analyze possible problems for every type of
solution, including attacks an adversary might launch on secu-
rity, throughput, and latency (transaction confirmation delays).
Finally, we point out possible future research directions for each
component.

1.2. Paper organization

Section 2 gives the background, definitions and notations that
are useful in this paper. In Section 3 we decompose sharding
blockchains into several components and discuss methodologies
to derive sharding blockchain systems from their composition. In
Sections 4, 5, and 6, basic concepts, existing approaches, open
problems and future directions of node selection, epoch random-
ness, and node assignment are given, respectively. These three
parts involve the method to confirm shard members. Then Sec-
tion 7 describes the classic state machine replication algorithms
that are used as intra-shard consensus. In Section 8, cross-shard
transaction processing methods are analyzed in detail, which is
important to all sharding blockchain systems. Sections 9 and 10
give the existing approaches and potential problems about shard
reconfiguration and motivation mechanisms. Section 11 describes
the related work. Finally, Section 12 summarizes this paper.

2. Preliminaries

In this section, we first give the background of sharding
blockchains. Then notations and definitions that are useful in the
paper are described in detail.

2.1. Background

Sharding blockchains adopt a unique blockchain consensus
mechanism. Next, we first describe the relevant background of
blockchain consensus and then introduce sharding blockchains.

2.1.1. Blockchain consensus
Blockchain technology is introduced by Bitcoin [1] in 2008,

which realizes the agreement of the ledger among distributed
nodes through a specific consensus mechanism. The reason why
the blockchain is called ‘‘chain’’ is because each block is linked
to the previous one in a specific cryptographic way. The contents
stored in a block mainly include the transactions generated in the
network during each period of time.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

h
t
t
w
m
t
c
T
w
a
o
U
m
p
3
r
c
b
s
d
b
c
s
p
f

d
l
n
i
d
n
b
c
w
I
w
c
p
a
t
s
a
a
b

a
t
a
p
h
L
b

d
i
t
m
p
c
F
s
W
s
b

Blockchain technology is currently a hot area of research and
as great application potential since it has the following charac-
eristics. The first characteristic is decentralization. Decentraliza-
ion means that there is no trusted third party in the network,
hich is different from the traditional centralized transaction
ode. The second characteristic is trustlessness, which means

hat nodes do not need to trust each other, and can finally reach
onsensus on the ledger through a specific consensus mechanism.
he third characteristic is transparency. In a permissionless net-
ork (ref. Definition 6), all nodes can join and leave the protocol
t any time, and nodes could obtain the historical ledger data
f the blockchain at any time. The fourth is tamper-resistance.
nder the assumptions of appropriate network and adversary
odels, historical data in the blockchain cannot be illegally tam-
ered with, except for some special redactable blockchains [32,
3]. Once a block is confirmed (strong consistency blockchains,
ef. Definition 20), or a block reaches a certain depth (weak
onsistency blockchains, ref. Definition 16), the contents of the
lock can no longer be modified. The fifth is anonymity. Through
ome approaches (such as transaction graph analysis [34,35]),
eanonymization analysis on historical transaction data could
e performed on some blockchains. However, by adopting some
ryptographic technologies, such as blind signatures [36,37], ring
ignatures [38,39], and zero-knowledge proofs [40,41], privacy-
rotection blockchains are designed to prevent users’ privacy
rom leakage.

As shown in Fig. 1, the architecture of blockchain could be
ivided into several layers, including a network layer, a consensus
ayer, and an application layer. In the network layer, participating
odes join a P2P communication network [42] to synchronize
nformation with each other. In a P2P network, the nodes are
istributed, and there is no central communication node in the
etwork. The transfer and update of information are completed
y the P2P communication between each node. Besides, there
ould be other kinds of connecting nodes in a blockchain net-
ork, such as databases, IoT devices, and lightweight clients.

n the consensus layer, the participating nodes in the network
ith certain computing and communication capabilities act as
onsensus nodes, that is, block producers (we use the term ‘‘block
roducer’’ instead of ‘‘miner’’ to make the meaning more general),
nd generate blocks through certain consensus algorithms. Note
hat there are many types of consensus algorithms, and Fig. 1
hows a Byzantine Fault Tolerance (BFT) [43] algorithm. Many
pplications, such as digital assets [44], smart contracts [45],
nd decentralized applications [46], could be built based on a
lockchain, together constituting the application layer.
A consensus mechanism is very critical to a blockchain system,

nd to a large extent determines the security and performance of
he system. A blockchain consensus is to ensure the consistency
nd liveness of the system by formulating rules for nodes to
articipate in the blockchain protocol. Consistency means that all
onest nodes ultimately have the same view of the blockchain.
iveness refers to that the transactions uploaded by users to the
lockchain are sure to be processed after a certain period of time.
At present, the blockchain consensus mechanisms could be

ivided into the following categories, according to [47]. First, it
s the classic distributed consensus algorithm, represented by
he Byzantine fault tolerance algorithms, which implements state
achine replication (ref. Definition 21) in a limited number of
articipating nodes. The second is proof-of-work (PoW) based
onsensus, including Bitcoin [1], Bitcoin-NG [48], GHOST [49],
ruitChains [50], SPECTURE [51], etc. Besides, there is proof-of-
take (PoS) based consensus, such as Casper FFG [52], Snow
hite [53], Ouroboros [54], etc. Finally, the hybrid consensus,

uch as PeerCensus [55], ByzCoin [56], Solida [57], etc., com-

ines classic state machine replication algorithms and blockchain

5

technology. According to the number of committees, the hybrid
consensus mechanisms could be divided into single-committee
and multi-committee hybrid consensus mechanisms. The multi-
committee hybrid consensus is a kind of sharding consensus
mechanism, which is introduced in the following.

2.1.2. Sharding blockchains
Sharding technology is first proposed and used in the field of

databases [30]. By dividing all participating nodes in the network
into multiple shards, each shard is only responsible for main-
taining its own corresponding data. In this way, the scalability of
network processing capabilities could be achieved. As the number
of nodes in the network increases, the enhancement of process-
ing capabilities is realized by adding more shards. The sharding
blockchain is first proposed by ELASTICO [31], which combines
sharding technology and blockchain technology, with the pur-
pose to increase the transaction throughput, i.e., the number of
transactions processed per second. Since then, there have been
many studies on sharding blockchains, such as Omniledger [58],
Chainspace [58], RapidChain [59], and Monoxide [60]. Sharding
blockchains are a practical solution to the so-called blockchain
impossible triangle problem, which means it is impossible to re-
alize security (consistency), decentralization, and scalability (high
performance/high throughput/scale-out) simultaneously.

In general, sharding blockchains have the following three char-
acteristics. The first one is communication sharding. Participating
nodes are divided into different shards where nodes in each shard
only need internal communication most of the time. The clients
and nodes within each shard could obtain the current state of
the blockchain by communicating with the intra-shard nodes that
are responsible for maintaining the blockchain, e.g., a committee.
The second one is computation sharding, which means that each
shard is only responsible for processing its corresponding trans-
actions. The distribution of transactions to shards is diversified,
e.g., by selecting the corresponding shard according to the trans-
action ID. Generally speaking, according to the last several bits of
the transaction ID, it is determined which shard the transaction
belongs to. So transactions are handled by different shards in
parallel. When the number of nodes in the network increases,
more shards could be added to realize scalability. The third one is
storage sharding. Storage sharding means that nodes of different
shards only needs to store the data of its corresponding shard. The
data includes transaction history and unspent transaction output
(UTXO, ref. Definition 14) data. Transaction history data exists in
the form of a blockchain, while the UTXO data could be derived
from transaction history data or could be stored separately to
improve its processing efficiency. Storage sharding allows nodes
to store a fraction of the entire blockchain system data, reducing
the storage burden of nodes.

As shown in Fig. 2, communications play an important role
in sharding blockchain systems. Nodes in the same shard only
need to execute intra-shard communication most of the time and
send some key information to a coordinator of the shard. The
coordinator is usually responsible for cross-shard communication
as well as intra-shard consensus, and each shard has at least
one coordinator. Generally speaking, the coordinator needs to
have stronger communication capabilities than other intra-shard
nodes.

Note that some methods, such as OHIE [61] and Prism [62], are
designed to improve the throughput of the blockchains, while in
a strict sense, sharding technology is not used in their structures.
Hence, we will not introduce this type of solutions, while focusing
on the blockchains that use sharding technology.

Compared with other methods to improve scalability. There are
also other approaches to improve the blockchain performance
(high throughput, low transaction confirmation time, scalability).
Existing methods could be divided into on-chain (also called layer
1) and off-chain (also called layer 2) methods.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
Fig. 1. Blockchain layers.
Fig. 2. Communications in sharding blockchain systems.
• On-Chain Methods. Sharding blockchains belong to the on-
chain methods, which include directed acyclic graph (DAG)
and sidechain approaches, too.

– DAG Blockchain. Differently from the single main chain
in Bitcoin, a DAG blockchain uses multiple chains to
follow the main chain. The target direction of the
branch chain and the main chain are the same, and
there are no loops. The structure is no longer a simple
chain structure. Each newly added block will be linked
to multiple previous blocks, and its hash value will be
included in its own block. The genesis block can be
reached through traceability, and all transactions are
arranged in blocks that finally form a directed acyclic
graph structure. DAG-based blockchains include IOTA
Tangle [63], Byteball [64], Conflux [65], Tusk [66], and
Bullshark [67].
 p

6

– Sidechains.6 Sidechains use a separate blockchain to
process transactions that might run a different con-
sensus mechanism than the one of the main chain.
The nodes involved in consensus and the consensus
algorithm could all be different from the main chain.
Meanwhile, there is a two-way peg, which is usually
implemented by smart contracts, to realize asset ex-
changes between the main chain and the sidechain.
Typical sidechain schemes include PoW sidechains [27]
and PoS sidechains [68].

• Off-Chain Methods. Off-chain methods process a huge num-
ber of micro-payments by interacting with the main chain

6 In other literature, sidechains are also classified as off-chain, or a class in
arallel with on-chain and off-chain.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

u

n
a
s
n
a
c
p
b
a

2

T
t
u
c
b
o
w
c
s
m
b
w
t
a
e
d

2

a

a
a
a
∆

g
T
m

D
n
r
h
m

r
w
d
p

e
c
s
c
t

Table 1
Notations.
Symbol Definition

tx a transaction
∆ the upper bound of the network’s delay
δ the actual delay of the network
u the exact number of members in a shard committee⋆
f the maximum number of malicious node in a shard

committee
m the total number of shards
n the total number of nodes that participate in the protocol
shardi the ith shard

Ci
e the ith committee of epoch e*

CR
e the reference committee of epoch e

LOGi the output log of the ith shard’s nodes
chain a blockchain
ρ the fraction of the computational power that is held by an

adversary
τ the corruption time parameter of an adversary
p the probability that one node finds a PoW solution

successfully in one single round

⋆ For the convenience of analysis, we assume that the number of members in
a committee is fixed.
* The concept of shard and committee is different. In committee-based sharding
blockchains, there is a committee responsible for processing transactions in
each shard, and we call it an ordinary committee. So the number of ordinary
committees is also m. Besides, some sharding blockchains, e.g., RapidChain [59],
tilize a reference committee to confirm committee members.

through channels. Typical methods include payment chan-
nels and state channels, such as in the Lighting Network
[21], Perun [69], etc. Please refer to [70] for off-chain scala-
bility protocols.

Compared with other methods, sharding blockchains split the
odes involved in consensus into different groups and utilize par-
llel processing methods. A sharding blockchain usually includes
everal major components such as node selection, epoch random-
ess, node assignment, intra-shard consensus, cross-shard trans-
ction processing, and shard reconfiguration. Each component
ould be implemented by different methods, and then by com-
osing all the components, a complete sharding blockchain could
e obtained. We will give a detailed analysis of each component
nd their composition approach in this paper.

.2. Notations

We summarize the notations that are used in our paper in
able 1. To make it compatible with other protocols, we use n
o denote the total number of participating nodes, while we use
to denote the number of members in a committee. So inside a
ommittee, the security condition that should be satisfied could
e represented by u = 2f +1 or u = 3f +1, where f is the number
f admissible failures. In addition, shardi denotes the ith shard,
hile the notation Ci denotes the committee in shardi. These two
oncepts are different since there might be no committee in a
hard in some kinds of sharding blockchains. The notation LOG
eans the output log, or ledger of a shard, while chain denotes a
lockchain. The specific meanings of LOG and chain are similar,
hile there are also differences. A blockchain chain might con-
ain other contents and information, such as block headers and
dditional information in OP_RETURN [71]. LOG usually means
xtracting key information from a blockchain, e.g., transaction
ata.

.3. Definitions

To make our description clearer, we give the definitions that
re useful in our paper and helpful in understanding sharding
 t

7

blockchains. As shown in Fig. 3, we divide the definitions into
several major categories and give their relationships. Each cat-
egory of definitions could be seen as a tree, where we can select
one of the leaf nodes in each tree to form a sharding blockchain.
In the following, we introduce these definitions related to net-
work model, adversary model, transaction model, intra-shard
consensus, and sharding blockchains.

2.3.1. Network model
To describe the network model more precisely, we divide

network models into message transmission models7 and node
admission models as follows.

Message transmission model. We assume that nodes participate in
the network with authentication. The messages sent by the nodes
are signed, and an adversary cannot forge the signature of any
honest node. There are different models for the message delay
rules. Next, we give the definitions of three different message
transmission models.

Definition 1 (Synchronous Network [74]). In a synchronous net-
work, messages between honest nodes are propagated in rounds.
In each round, the messages sent by honest nodes can reach all
other honest users before the next round. Each round has a fixed
length of time.

Synchronous networks are relatively strong network models.
There are two kinds of definitions for a partially synchronous

network.

Definition 2 (Partially Synchronous Network-Definition A [74]). In
a partially synchronous network, there is a certain upper bound
∆ of message transmission delay in the network. The parameter
∆ cannot be used as a parameter in the design of a protocol.

Definition 3 (Partially Synchronous Network-Definition B [75]). In
partially synchronous network, there is a known bound ∆ and
n unknown Global Stabilization Time (GST), such that after GST,
ll transmissions between two honest nodes arrive within time
.

Under this definition, a protocol usually ensures safety and
uarantees progress within a bounded duration after the GST.
he partially synchronous network is a commonly used network
odel in the analysis of blockchain protocols.

efinition 4 (Asynchronous Network [75]). In an asynchronous
etwork, there exists an adversary who can arbitrarily delay or
eorder messages of honest nodes, as long as the messages of
onest users can reach each other. There is no upper limit of
essage transmission delay.

About the asynchronous network, the FLP impossibility theo-
em [76] argues that in an asynchronous system where the net-
ork is reliable but where crash failures are allowed, there is no
eterministic consensus mechanism that can solve the consensus
roblem.
Most blockchain protocols adopt one of the above three mod-

ls. However, in a sharding blockchain, two situations need to be
onsidered. The first is the model of the entire network, and the
econd is the internal model of each shard. These two models
ould be the same or different and need to be analyzed according
o actual conditions and requirements.

7 Note that in other work [72,73] network model mainly refers to message
ransmission model in our paper.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

N
t
t
t
W
i

D
m
c

p
t
i
u

D

Fig. 3. Definitions and their relationships.
a
p
o

D
m
n
o

t

ode admission model. Note that we assume that the nodes in
he network are homogeneous, i.e., each node has close compu-
ation and communication capabilities. In blockchain protocols,
he rules for nodes to participate in the protocols are different.
e name these rules as node admission models and divide them

nto permissioned and permissionless networks as follows.

efinition 5 (Permissioned Network). A permissioned network
eans that the nodes participating in the protocol must first
omplete identity authentication.

Identity authentication is usually done through a trusted third
arty, e.g., a certificate authority (CA). In a permissioned network,
he number and identities of all nodes are known. This model
s mostly adopted by some internal protocols of enterprises or
nits [77].

efinition 6 (Permissionless Network). In a permissionless net-
work:

• Any node can join or leave at any time;
• No identity authentication is required;
• The number of participating nodes varies at any time and is

unpredictable.

So in a permissionless network, information about the num-
ber and identity of all participant nodes is unknown. The read
and write rights of the data are generally open to all nodes,
guaranteeing the decentralization property [29].

The words ‘‘permissioned’’ and ‘‘permissionless’’ in the above
two models can usually be combined with different terms, such
as ‘‘permissioned blockchain’’, which means a blockchain protocol
8

in a permissioned network, or ‘‘permissionless consensus’’, which
means a consensus algorithm in a permissionless network.

2.3.2. Adversary model
The adversary model describes the various capabilities of an

adversary in a protocol. We divide the adversary model into the
corruption model, the total proportion model, and the intra-shard
proportion model.

Corruption model. In this model, an adversary could completely
control a target node and obtain its secret information, the input
and output messages.

We describe an adversary’s corruption ability from two as-
pects, i.e., corruption timing and corruption speed. First, accord-
ing to the timing at which an adversary can launch a corrup-
tion attack, the corruption model could be divided into static
and adaptive corruption. Second, according to the time taken by
an adversary to complete the corruption attack, there are mild
corruption and immediate corruption.

Definition 7 (Static Corruption). A static corruption means that
n adversary can only select its corruption targets before the
rotocol starts. Once the protocol starts running, it cannot choose
ther honest nodes to corrupt.

efinition 8 (Adaptive Corruption [78]). Adaptive corruption
eans that an adversary is able to dynamically corrupt target
odes according to the information collected during the operation
f the protocol.

The above two models are usually considered in some cryp-
ographic protocols. In the context of sharding blockchains, it

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

i
w
S
a
p
c
c
i

D

g

I
t
n
c
a
i

I
T

s more important to consider the corruption speed since this
ill affect the reconfiguration process of a sharding blockchain.
pecifically, if the shard members remain unchanged, then an
dversary may corrupt and control one of the shards after a
eriod of time. Therefore, a sharding blockchain needs to update
ommittee members at regular intervals, where the interval is
alled an epoch. In order to make the description clearer, we
ntroduce the definition of epoch here.

efinition 9 (Epoch). An epoch in a sharding blockchain refers
to the time period during which all shard members remain un-
changed and continue to operate. Different epochs correspond to
different shard member configurations.

A reconfiguration refers to switching from one epoch to an-
other, i.e., the process of updating the shard members. The time
length of an epoch is closely related to the time required for the
adversary to complete the corruption. To better describe this, we
give the following two definitions.

Definition 10 (Mild Corruption [79]). Mild corruption means that
it takes a certain amount of time which is usually denoted as
τ for an adversary to corrupt a node. An adversary first issues
the corruption command at time t to the target node. After τ
time, the target node is corrupted and becomes a malicious node.
Before time t + τ , the target node remains honest.

We call τ the corruption time parameter in this paper.

Definition 11 (Immediate Corruption). Immediate corruption
means that an adversary’s corruption attack is effective imme-
diately, i.e., τ = 0.

At present, most sharding blockchains adopt the mild corrup-
tion model. As far as we know, the immediate corruption model
is only used in few blockchain protocols, e.g., Algorand [80].

Total proportion model. The total proportion model refers to a
certain limit on the proportion of computational power or stake
that an adversary can control in the whole network. For an entire
blockchain protocol, a percentage or fraction is generally used.
The common used total proportion model might be denoted by
25%, 1/3, 49%, etc. The adversary proportion is less than or equal
to these specific percentages or fractions.

For the sake of consistency, we use fractions to indicate the
total proportion of the adversary in this paper. According to
its relationship with the intra-shard proportion, we divide the
total proportion into [0, 1/3) and [1/3, 1/2), as shown in Fig. 3.
[0, 1/3) means that the proportion is greater than or equal to 0
and less than 1/3. Similarly, [1/3, 1/2) refers to the proportion
reater than or equal to 1/3 and less than 1/2.

ntra-shard proportion model. Generally speaking, the represen-
ation of an adversary model in a shard is different, since the
umber of shard members is usually limited and fixed. Specifi-
ally, the relationship between the number of nodes controlled by
n adversary and the total number of shard members is expressed
n the form of an equation. f is used to represent the number
of malicious nodes, and u denotes the total number of nodes in
a shard.8 The intra-shard adversary proportion model could be
described as follows.

Definition 12 (u = 2f + 1). The proportion of malicious nodes
that an adversary controls accounts for no more than 1/2 of the
whole shard.

8 In other papers, n is usually used to denote the number of shard members.
n this paper, we use n to represent the total number of nodes in the protocol.
o avoid conflicts, we use u to denote the number of members in a shard.
9

Definition 13 (u = 3f + 1). The proportion of malicious nodes
that an adversary controls accounts for no more than 1/3 of the
whole shard.

These two models are usually utilized when there are com-
mittees running some BFT algorithms in the shards. u = 2f +1 is
often in need in some synchronous BFT protocols, while partially
synchronous BFT protocols usually require the model to be u =

3f + 1.

2.3.3. Transaction model
The main function of most blockchain systems is to process

transactions. A transaction usually contains information such as
timestamp, input, output, signature, etc., and is often used to
realize the transfer of property. Different blockchain systems
may adopt different transaction models. The existing transaction
models are mainly divided into the UTXO model, account model,
and others. The UTXO model and account model are the most
commonly used models, and we term such a model a ‘‘generic’’
one. Others refer to some special transaction models. For instance,
in Hyperledger Fabric [77], one can create transactions by not
associating a balance with an account.

UTXO model. The UTXO model is the most commonly used
blockchain transaction model.

Definition 14 (UTXO Model [81]). In the UTXO model, assets
(money/coins/stakes) are stored in unspent transaction outputs
(UTXOs). Each UTXO contains the public key address of the output
and its value. Each transaction spends existing UTXOs and creates
new UTXOs, essentially transferring assets from the input public
key address to the output public key address. Besides, a valid
transaction requires that the sum of values in the output UTXOs
must be equal to that in the input UTXOs.

Account model. The account model is another common
blockchain transaction model defined as follows.

Definition 15 (Account Model [81]). In the account model, each
user has a fixed account. The account information includes the
account address and account balance, and the account balance
must be non-negative. A transaction is to transfer assets from
one account to another account. A valid transaction requires that
the balance in the input account is greater than or equal to the
transaction amount.

2.3.4. Intra-shard consensus
Intra-shard consensus is crucial to sharding blockchains. Next,

we will introduce definitions related to intra-shard consensus in
terms of weak and strong consistency.

Weak consistency. Weak consistency is also known as eventual
consistency, which is defined as follows.

Definition 16 (Weak Consistency). Weak consistency means that
different nodes might end up having different views of a
blockchain, which leads to forks. A certain number of blocks at
the end of the blockchain need to be truncated to obtain stable
transactions.

Specifically, based on the election method of a block pro-
ducer, there might be two or more legal block producers in
the same round. In this case, a short-term fork might appear
in a blockchain. However, after a certain period of time, a final
blockchain is determined according to some kind of decision rule,
such as the longest chain rule of Bitcoin [1] or the heaviest chain
rule of GHOST [49]. Other blockchain systems that have weak
consistency property are PPCoin [82], Ouroboros [54], etc.

The following three properties proposed by the Bitcoin back-
bone protocol [18] are suitable for blockchains with weak consis-
tency property.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

D

w

t
i

l
b
w
m
i

D
p
p
n

c
T

a
r
T

t
h

S
n
t

D
t
s

a
H
b
r
t
s
d

D
r
a
l
m

a
s
l
s

t
B
r
c
a

D
i

B
A
r
a

i
n
i

D
a
l

B
w
B
f

2

a
s
o
t
t

D
b

T
i

efinition 17 (Common Prefix [18]). For any two blockchains
chain1, chain2 output by any two honest nodes P1, P2 in any two
rounds r1, r2, it holds that chain⌈k

1 ⪯ chain⌈k
2 or chain⌈k

2 ⪯ chain⌈k
1

here k ∈ N is the security parameter. That is to say, when
r1 ≤ r2 is satisfied, it holds that chain⌈k

1 ⪯ chain⌈k
2 ; when r2 ≤ r1 is

satisfied, it holds that chain⌈k
2 ⪯ chain⌈k

1 . chain⌈k
1 means removing

he ending k blocks of chain1, chain1 ⪯ chain2 denotes that chain1
s a prefix of chain2. P1, P2 might be the same node.

The common prefix property could be understood in the fol-
owing way. The blockchains held by honest nodes will eventually
e consistent with each other, and the stable part of a blockchain
ill not be rewritten. After removing the last k blocks, the re-
aining blockchain is regarded as the stable part. The value of k

s usually related to system security.

efinition 18 (Chain Quality [18]). For any blockchain chain out-
ut by any honest node P , after removing the latest k0 blocks, the
roportion of malicious blocks in any k consecutive blocks does
ot exceed µ. The security parameters are µ ∈ R, k, k0 ∈ N.

The chain quality property means that there must be a suffi-
ient proportion of consecutive blocks generated by honest users.
he last k0 blocks are usually the ‘‘unstable’’ blocks at the end of

a blockchain.

Definition 19 (Chain Growth [18]). For any round r (r > r0) and
ny honest node P , if P outputs chain1 and chain2 in round r and
+ s, respectively, then it holds that |chain2| − |chain1| ≥ τ · s.
he security parameters are τ ∈ R, s, r0 ∈ N.

The chain growth property means that a blockchain will con-
inuously generate new blocks, and the block generation speed
as a lower bound.

trong consistency. Strong consistency means that there is no
eed to wait for a block to reach a certain depth to confirm
ransactions. Blocks and transactions are confirmed immediately.

efinition 20 (Strong Consistency). Strong consistency means that
he generation of each block is deterministic and instant. Besides,
trong consistency has the following characteristics:

• There is no fork in a blockchain. By running a distributed
consensus algorithm, state machine replication (ref. Defini-
tion 21) is achieved;

• Transactions could be confirmed more quickly. As long as a
transaction is written into a block, the transaction could be
regarded as valid;

• Transactions are tamper-proof. As long as a transaction
block is written to a blockchain, the transaction and block
will not be tampered with and the block will remain on the
chain at all times.

The blockchain systems that have strong consistency property
re PeerCensus [55], ByzCoin [56] and its adaptation MOTOR [83],
ybrid Consensus [84], Solida [57], Omniledger [58], etc. In these
lockchains, there is a committee or multiple committees that
un distributed consensus algorithms, e.g., PBFT [43], to confirm
ransactions and generate new blocks. These distributed con-
ensus algorithms achieve state machine replication, which is
efined as follows.

efinition 21 (State Machine Replication [85]). State machine
eplication is a general method for a set of servers, which include
single primary and other backups, to reach an agreement on a

inearly-ordered log, where the following two security properties
ust be satisfied.
10
• Consistency, i.e., the views of all honest servers must be
identical to each other.

• Liveness, i.e., whenever one piece of valid data is submitted
to the servers, it will be written to the log within some
bounded time.

State machine replication is also known as atomic broadcast,
nd it has been studied for decades in the area of distributed
ystems. State machine replication is often used to synchronize
arge databases. For example, Google and Facebook use it for the
ynchronization of core parts of their databases [86].
State machine replication needs to tolerate a specific propor-

ion of faulty nodes. A faulty node might be a crashed node or a
yzantine node. A crashed node refers to a node that does not
espond. The node may have a system failure or be offline. A
rashed node is a relatively simple faulty node compared with
Byzantine node defined as follows.

efinition 22 (Byzantine Node). A node is called a Byzantine node
f it could behave arbitrarily as follows [87].

• It does not respond to messages sent to it;
• It sends different messages to different nodes when such

messages were supposed to be identical.

yzantine nodes are considered to be controlled by an adversary.
Byzantine node must observe some restrictions, which are also

estrictions on the adversary, usually given in the network model
nd the adversary model.

The Byzantine node model is a commonly used fault model
n distributed systems, and an algorithm that can tolerate such
odes is called a Byzantine Fault Tolerance (BFT) algorithm, which
s defined as follows.

efinition 23 (Byzantine Fault Tolerance [87]). A set of nodes
chieve state machine replication and satisfy consistency and
iveness in the presence of Byzantine nodes.

There is usually a certain constraint on the proportion of
yzantine nodes. For instance, in a partially synchronous net-
ork model, the system is usually able to tolerate at most 1/3
yzantine nodes. In a synchronous network, the largest tolerated
raction of Byzantine nodes is below 1/2.

.3.5. Sharding blockchains
After determining the network model, adversary model, trans-

ction model, intra-shard consensus, and other components, a
harding blockchain is constructed. We give a formal definition
f a secure sharding blockchain. Since this definition is based on
hat of a ‘‘public ledger’’ by Garay et al. [18], we first introduce
he definition of a ledger.

efinition 24 (Ledger). A ledger refers to a credible ‘‘bulletin
oard’’ that meets the following properties:

• Persistence. Persistence means that for any honest node, if
the node outputs a transaction tx at a certain position in his
ledger, such as the j-th transaction of the i-th block, then
tx must appear in the identical position in the ledgers of all
honest nodes.

• Liveness. Liveness means that if a valid transaction tx is
uploaded at time t , then after a certain time, tx must appear
in the ledgers output by all honest nodes.

he participating nodes are able to write some data on a ledger
f the data meets the specific rules of the ledger.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

d
o
a
n
i
l

A
r
s
s
s
t
h
s
a

D
v
Π

s
c
p
s

Note that in the original Bitcoin backbone protocol [18], the
efinition of a public ledger is given. In order to make the concept
f ‘‘ledger’’ better applicable to various network models, we make
slight modification and directly define a ledger. Then different
ode admission models correspond to different types of ledgers,
.e., a private ledger in a permissioned network, and a public
edger in a permissionless network.

secure sharding blockchain. A sharding blockchain could be
egarded as a special type of ledger. In order to make the de-
cription clearer, we give a relatively formal definition of a secure
harding blockchain in the following. The definition is an exten-
ion to the Bitcoin Backbone Protocol [18] which utilizes consis-
ency and liveness as basic properties. In sharding blockchains,
owever, the notion of consistency is more complex than in non-
harded ones. We divide consistency into common prefix inside
shard and no conflict between shards.

efinition 25 (A Secure Sharding Blockchain). Let (A,Z) be an ad-
ersary and environment pair w.r.t. a sharding consensus protocol
. Tinitial denotes the time for a sharding blockchain protocol to

tart up, including the production of genesis blocks and initial
ommittees. Tliveness denotes the transaction confirmation delay
arameter, i.e., the time required to commit a transaction. We
ay Π is secure w.r.t. (A,Z) with parameters Tinitial, Tliveness if the
following properties hold with an overwhelming probability:

• Consistency. Consistency includes the following two proper-
ties:

– Common prefix inside a shard: For any two honest nodes
i, j ∈ shardc where c ∈ [1,m], node i outputs LOGi to Z
at time t , and node j outputs LOGj to Z at time t ′, it holds
that either LOGi ⪯ LOGj or LOGj ⪯ LOGi.

– No conflict between shards: For any two honest nodes i ∈

shardc, j ∈ shardc′ where c, c ′
∈ [1,m] and c ̸= c ′, node i

outputs LOGi to Z at time t , and node j outputs LOGj to Z
at time t ′. For any transaction tx1 ∈ LOGi and tx2 ∈ LOGj
where tx1 ̸= tx2, it holds that tx1 and tx2 do not conflict with
each other, i.e., there is no input that belongs to tx1 and tx2
simultaneously.

• (Tin-live, Tcross-live)-Liveness: For any honest node from any shard,
if it receives an intra-shard/cross-shard transaction tx at time
t0 ≥ Tinitial from Z , then at time t0 + Tin-live/t0 + Tcross-live,
respectively, tx must be accepted or rejected.

Note that in the description of ‘‘no conflict between shards’’,
we require that the condition tx1 ̸= tx2 holds since different
shards might record the same cross-shard transaction in their
blockchain, respectively. The essence of ‘‘no conflict between
shards’’ is that no double-spending happens for any UTXO. For
the liveness parameter, we divide it into the intra-shard liveness
parameter (Tin-live) and the cross-shard one (Tcross-live), since the
time required for processing in each of these is different.

Transaction confirmation. Generally, the main purpose of a
blockchain is to complete transaction processing and confirma-
tion. In the following, the definition of transaction confirmation
delay and responsiveness are given, both of which are very
important evaluation indicators.

Definition 26 (Transaction Confirmation Delay). For a transaction
tx, if it is submitted by a client at some time t , and it appears in
an honest node’s ledger at time t ′, then t ′ − t is the transaction
confirmation delay. t ′ − t could also be regarded as the liveness
parameter of a ledger.
11
Transaction confirmation delay refers to the time needed for
a valid transaction to be confirmed by a blockchain. Namely, it
ranges from the time that the transaction is submitted by a client,
to the time that the transaction appears in an honest node’s
ledger.

Besides, Pass and Shi [84] propose the concept of responsive-
ness.

Definition 27 (Responsiveness [84]). Responsiveness means the
confirmation time of a transaction is only related to the actual
network delay δ, but not to a priory upper bound ∆.

The concept of responsiveness is used in much related re-
search [88,89] now as an evaluation indicator for transaction
confirmation.

The systematic introduction of these definitions aims at sup-
porting the concept of composability of components in Section 3.
Specifically, as Fig. 3 indicates, we could select one of the leaf
nodes from each ‘‘tree’’ on the left to form a complete sharding
blockchain system. For instance, in Fig. 3, we have selected the
‘‘Partially Sync’’ in the ‘‘Message Transmission Model’’, the ‘‘PoW’’
and ‘‘Permissionless’’ in the ‘‘Node Admission Model’’, the ‘‘Adap-
tive’’ in the ‘‘Corruption Timing’’, the ‘‘Mild’’ in the ‘‘Corruption
Speed’’, the ‘‘UTXO Model’’ in the ‘‘Transaction Model’’, and the
‘‘Byzantine Fault Tolerance’’ in the ‘‘Intra-Shard Consensus’’ trees.
In this way, we obtain a complete sharding blockchain system
that is very similar in its assumptions to Omniledger [58].

Interestingly, through this choice-combination approach, we
could obtain a ‘‘sharding blockchain system generator’’ which
could be used to produce a variety of different sharding
blockchain systems. Considering the practical combinations, the
corruption timing and speed is usually set to ‘‘Adaptive’’ and
‘‘Mild’’, respectively. For the node admission model, intra-shard
consensus, and transaction model, if we exclude the ‘‘Others’’
leaf options, then there are 3 ∗ 3 ∗ 1 ∗ 1 ∗ 3 ∗ 2 ∗ 4 = 216
types of different secure sharding blockchain systems that might
be composed. The constraints between some models have been
taken into consideration, such as the total proportion and the
intra-shard proportion.

3. Decomposing sharding blockchains into functional compo-
nents

In this section, we decompose sharding blockchains into func-
tional components. Section 3.1 describes the inputs, outputs,
basic functions, and properties of each component. Section 3.2
provides concrete methods to compose different components into
a complete sharding blockchain system. Section 3.3 summarizes
existing sharding blockchain schemes.

3.1. Decomposition of sharding blockchains

Inspired by the concept of a framework in [90], we propose a
framework for sharding blockchains and decompose it into func-
tional components, including node selection, node assignment,
epoch randomness, intra-shard consensus, cross-shard transac-
tion processing, shard reconfiguration, and motivation mecha-
nism. These components could be composed into a complete
sharding blockchain system. The schematic diagram of a sharding
blockchain is shown in Fig. 4.

Next, we give an informal description of each component. In
each component, we describe the interfaces (inputs and outputs),
basic functions, and properties to be satisfied.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

3

N
p
s
t
b

Fig. 4. The schematic diagram of a sharding blockchain.
.1.1. Node selection
As shown in Component 1, Ns is a subset selection component.

s takes in pnodes as an input, which represents a set of partici-
ating nodes in the network, and outputs snodes, which denotes a
et of selected nodes. {Pi}|km| denotes that there are km nodes in
he set. snodes is a subset of pnodes, and snodes might be used
y the Na component. k denotes the number of old members

that each shard needs to replace during each reconfiguration
(equal to the number of newly added members of each shard).
So km represents the number of selected nodes required for each
reconfiguration. In order to select km nodes, the total number of
participating nodes n must be greater than km.

The basic function of Ns is to select qualified shard members
from all participating nodes. In a permissionless network, each
node could be a member of pnodes. Ns might make use of some
mechanisms, such as PoW and PoS, to defend against the Sybil
attacks [91], where an adversary tries to increase his proportion
12
Component 1: Ns (Node Selection)
1 input: a set of participating nodes pnodes = {P1, · · · , Pn}.
2 output: a subset of pnodes containing selected nodes

snodes = {Pi}|km|.
3 function: select a certain number of qualified nodes from

all participating nodes.
4 property: fairness; robustness.

in snodes by creating fake identities. In a permissioned network,
the function of Ns is implemented by a trusted third party,
e.g., CA. The CA completes the confirmation of snodes by providing
the identity registration service.

The properties that need to be satisfied by Ns are fairness and
robustness. The definition of fairness is given in Definition 31,
which is mainly used to limit the proportion of the adversary’s

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

n
p
n

3

d
i
p
r

o
p
f
r
e

r
n
n
n
G
r
m
t

p
e
t
r
i

⟨

I
a
c
d
w
m

b
C
o
p
n
n
c
f
i

3

T
b
s
t
s

C
s
b
b

odes in snodes. Robustness means that even with the partici-
ation of the adversary, snodes will still be confirmed by honest
odes.

.1.2. Epoch randomness
As shown in Component 2, Er is usually an interactive and

istributed component where each participant creates a private
nput, namely x1, x2, . . . , xq. We use q to denote the number of
articipants. The epoch randomness is denoted by ξe where e
epresents the epoch number.

Component 2: Er (Epoch Randomness)
1 input: q private inputs x1, x2, · · · , xq.
2 output: an epoch randomness ξe.
3 function: participants run a randomness generation

protocol to generate a secure randomness.
4 property: public-verifiability; unpredictability;

bias-resistance; availability.

The basic function of Er is to enable each honest node to
btain an identical randomness through the interactions with
articipants. The randomness must be secure, i.e., satisfies the
ollowing properties: public-verifiability, unpredictability, bias-
esistance, and availability. Public-verifiability means that ev-
ry node can verify the correctness of ξe. Unpredictability indi-

cates that no one can obtain the randomness in advance. Bias-
resistance means that the adversary?s participation will not affect
the result of the randomness and availability is to ensure that
the randomness is sure to be generated. The concrete explanation
of these properties for a randomness is given in Section 5.1. An
epoch randomness is usually utilized as a seed to assign nodes
randomly into shards and used as a fresh puzzle in PoW mining.

3.1.3. Node assignment
As shown in Component 3, Na represents the node assignment

component, which takes in snode and ξe as inputs, and outputs
anodes. anodes denotes an assigned node list which might contain
m groups of nodes. {Pi}|k| denotes that there are k elements in
the set. Na is to map the km nodes in snodes to a set anodes
that includes m different subsets a1, . . . , am, and each subset aj
contains k nodes.

Component 3: Na (Node Assignment)
1 input: selected nodes snodes, epoch randomness ξe.
2 output: assigned nodes anodes = {a1, · · · , am} where

aj = {Pi}|k| for every j = 1 to m.
3 function: assign selected nodes into m different subsets

randomly based on the epoch randomness ξe.
4 property: random distribution; robustness.

The basis function of Na is to assign the selected new nodes
andomly to multiple shards. The random distribution of new
odes is required to prevent an adversary from centralizing the
odes controlled by himself into a certain shard. Similarly, robust-
ess is to ensure the final execution of the assignment operation.
enerally speaking, the epoch randomness ξe is treated as a
andom seed for a pseudorandomness generator [92], to produce
ultiple pseudorandomnesses for each new node as a reference

o be assigned.
Note that the list anode is not the same as the list of nodes

articipating in the entire protocol in the next epoch, since differ-
nt sharding blockchains might have different replacement rules
o substitute the old nodes in each shard with new nodes. The
eplacement rule is determined by the Sr component and will be
ntroduced in Section 3.1.6.
13
3.1.4. Intra-shard consensus
Component 4 shows the interfaces, functions and properties

of the intra-shard consensus Isc. Isc takes continuous proposals
as inputs, and each proposal could be represented by p with a
different subscript. In normal blockchains, Isc is used to pro-
cess transactions, which means the proposals are transactions.
In sharding blockchains, a proposal p could be a transaction, a
transaction input, or other values to be committed. Isc outputs
p⟩, where the notation ⟨·⟩ denotes that the value is committed.

Component 4: Isc (Intra-Shard Consensus)
1 input: a proposal p.
2 output: a committed ⟨p⟩.
3 function: shard members run some consensus algorithm

to commit proposals, i.e., reach agreement on proposals.
4 property: consistency; liveness.

The basic function of Isc is to process and commit proposals.
sc might be divided into strong consistency (ref. Definition 20)
nd weak consistency (ref. Definition 16), depending on the spe-
ific algorithm adopted. Strong consistency corresponds to classic
istributed consensus algorithms, such as BFT-type algorithms,
hile weak consistency corresponds to PoW, PoS, and other
ethods.
Regardless of the specific implementation method adopted

y Isc, Isc should meet the consistency and liveness properties.
onsistency ensures that all honest nodes have an identical view
f the commitment values and liveness guarantees that Isc could
rocess any proposal within a period of time. In the asynchronous
etwork transmission model, since there is no GST, when the
etwork condition is bad, the protocol can only choose either
onsistency or liveness. As an intra-shard consensus algorithm
or sharding blockchains, the assurance of consistency is more
mportant.

.1.5. Cross-shard transaction processing
As shown in Component 5, Cstp takes in a transaction package

Xs as input. Note that in practical situations, transactions may
e uploaded individually by users, and different transactions are
ubmitted to the corresponding shard. The output of Cstp is a
ransaction log denoted by LOGc which is specific to the current
hard.

Component 5: Cstp (Cross-Shard Transaction Processing)
1 input: a transaction package TXs.
2 output: m committed transaction logs LOG1, · · · , LOGm.
3 function: Cstp invokes Isc inside each shard to process

and commit cross-shard transactions through
interactions and communication with other related
shards. In each shard, Cstp outputs the corresponding
transaction log or blocks.

4 property: common prefix inside a shard; no conflict
between shards; liveness.

Cstp includes and makes use of Isc. The basic function of
stp is to process cross-shard transactions. Note that cross-
hard transactions occupy most of the transactions in a sharding
lockchain, and intra-shard transactions could also be processed
y Cstp as special cross-shard transactions. In most sharding

blockchains, the processing of cross-shard transactions could be
divided into two phases. In the first phase, input shards generate
proofs to prove if the transaction inputs are available or not
and send the proofs to related shards. In the second phase, all
related shards verify if the transaction is valid through the proofs
received. Please see Section 8 for a detailed analysis.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

o
i
s
p

3

a
m
n
t
d

n
m
w
t
b
f
o
r
F
f
d
h

t
e
t
s
P

3

o
p
n

m
p
m
r
n

s

The properties that Cstp needs to satisfy are the same as those
f a secure sharding blockchain defined in Definition 25, that
s, consistency and liveness. Due to the special scenario of the
harding blockchain, the consistency property includes common
refix inside a shard and no conflict between shards.

.1.6. Shard reconfiguration
As shown in Component 6, Sr takes in the assigned nodes

nodes and the list of epoch e liste as inputs, and outputs the shard
ember list liste+1 of epoch e + 1. C = {Pi}|u| is a set including u
odes. Note that we use C to denote committee members when
here is a committee in a shard, while C could also be used to
enote shard members when there is no committee in a shard.

Component 6: Sr (Shard Reconfiguration)
1 input: assigned nodes anodes, a shard member list liste of

epoch e.
2 output: a shard member list of epoch e + 1:

liste+1 = {C1
e+1, · · · ,C

m
e+1} where Cj

e+1 = {Pi}|u| for every
j = 1 to m.

3 function: confirm the shard member list of epoch e + 1
based on liste and anodes, i.e., determine which old nodes
of each shard are replaced by new nodes; specify the
details of bootstrapping when new nodes join the shard.

4 property: honest shard; liveness.

Due to the adversary corruption attack, shards or committees
eed to be updated after a certain period of time, or an adversary
ight control a shard. The basic functions of Sr are to determine
hich nodes participate in the protocol in epoch e + 1, namely
he members of each shard. Generally, in order to ensure that the
lockchain can still process transactions normally during recon-
iguration, only part of the old members are replaced with new
nes during reconfiguration. The replacement process may be
andom (epoch randomness ξe is useful in this case, as shown in
ig. 4), or rely on other special rules. Please refer to Section 2.1.2
or details. In addition, Sr needs to design the bootstrapping
etails when a new node joins the shard, such as downloading
istorical transaction data and UTXO/account data.
One of the properties that Sr needs to satisfy is to ensure

hat each shard is honest. An honest shard means that the hon-
st member proportion in each shard exceeds the preset safety
hreshold, which is determined by the Isc component inside the
hard. For instance, u ≥ 3f + 1 should be satisfied if Isc adopts
BFT [43] as its basic algorithm.

.1.7. Motivation mechanism
As shown in Component 7, Mm does not have clear inputs and

utputs, since Mm is usually determined by the entire blockchain
rotocol, rather than as a local algorithm that could be called by
odes.

Component 7: Mm (Motivation Mechanism)
1 function: reward nodes who participate the protocol

positively and honestly; punish nodes who behave
negatively and maliciously.

2 property: fairness.

Generally, a motivation mechanism includes an incentive
echanism to reward the active and honest nodes, as well as a
unishment mechanism to collect fines from nodes who behave
aliciously or go offline. The penalty mechanism might first

equire each participating node to pay a certain deposit, and all
odes could report the malicious behaviors of other nodes.
Mm needs to meet the fairness of reward distribution, i.e., as-

uming that the nodes participating in the protocol are rational,
14
the level of rewards for nodes should correspond to their work-
load. For example, committee leaders usually have higher com-
putation and communication costs and deserve a higher reward.

3.2. Composing separate components into sharding blockchain sys-
tems

The previous section gives the components of sharding
blockchains, including their interfaces, basic functions, and prop-
erties. Now, we could utilize these components to compose a
complete sharding blockchain system.

3.2.1. General methods to compose a sharding blockchain system
A complete sharding blockchain system includes all the build-

ing blocks described earlier in the previous section. In the follow-
ing, we discuss how to compose all these building blocks into a
complete sharding blockchain system.

A complete sharding blockchain protocol Π is a composition
of the Ns,Na, Er, Sr, Isc, Cstp, and Mm components, and the
composition approach is shown in Fig. 5. Besides, Fig. 5 describes
the epoch transition operations of a sharding blockchain, i.e., from
epoch e to epoch e+1. Since Mm is employed by the entire proto-
col rather than a local algorithm of nodes, Mm is not indicated in
Fig. 5. We divided the whole operations of a sharding blockchain
into the following two parts.

The first part is the confirmation of the shard member list
for epoch e + 1, including the Ns,Na, Er and Sr components.
First, Ns adopts a certain method, such as PoW, PoS and CA, to
selects a certain number of qualified nodes snodes among all the
participating nodes pnodes. Second, at the end of epoch e, Er is
run to generate a secure epoch randomness ξe. Third, Na uses
ξe to randomly allocate all new nodes of snode into m different
groups, corresponding to m shards. Note that at this time, anodes
only includes new nodes, which means anodes is not equivalent
to the list of shard members for the new epoch. At last, Sr takes
in liste and anodes as inputs, determines which old members are
to be replaced by new nodes in each shard, and finally generates
a shard member list for epoch e + 1. Note that Ns might take
place during the execution of the entire epoch e, while Na, Er,
and Sr are usually executed during epoch changes. Besides, the
above operations apply for every epoch.

The second part is related to transaction processing, including
Isc and Cstp. Each shard runs the Isc component. If the Isc has
the strong consistency property, then there is a committee inside
each shard to run Isc. Cstp processes transactions by invoking Isc.
Note that the inputs from Cstp to Isc are not always transactions,
but also other kinds of proposals, e.g., transaction inputs. In
addition, inter-shard communication is required among shards to
complete the commitments of cross-shard transactions. Finally,
each shard outputs its own transaction log, i.e., LOG1, . . . , LOGm.

3.2.2. Distinct combinations of system models and components
In the process of constructing a sharding blockchain system,

by choosing distinct kinds of system models and components, we
could obtain different types of sharding blockchain systems.

Distinct system models. As shown in Fig. 3, system models include
network models, adversary models, and transaction models.

For the message transmission model, a sharding blockchain
usually adopts a partially synchronous or a synchronous model.
Note that the message transmission model for the entire network
and inside each shard in a sharding blockchain could be different.

Regarding the node admission model, by choosing different
models, we could obtain permissionless and permissioned shard-
ing blockchains. In a permissioned network, nodes that partici-
pate in the protocol first need to register their identity in a CA.
The process of identity registration by the CA could be regarded

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

a
e

u
a
u
p
s
p
i
p

m
t
u

D
c
w
b
p
o
i
a
i

Fig. 5. Component composition diagram of a sharding blockchain.
Fig. 6. Taxonomy of each component (see footnote 9).
b
s
c

w
c
i
r
m

s a particular way for the permissioned sharding blockchains,
.g., [93–95], to implement the Ns component.
For the adversary corruption model, a sharding blockchain

sually assumes an adaptive and mild adversary model, since
n immediate corruption adversary is much too powerful and
nrealistic. For the proportion model, the total and intra-shard
roportion models are related. The intra-shard proportion model
hould first be determined according to Isc. Then, the total pro-
ortion should be lower than the intra-shard proportion, since
n the process of Na and Ns, an adversary might increase its
roportion through various attacks.
For the transaction model, the UTXO model and the account

odel could be commonly used. The UTXO model supports mul-
iple input and multiple output transactions. The account model
sually only supports single-input single-output transactions.

istinct components. For each component, we could choose spe-
ific and different implementation methods. In Sections 4–10,
e will classify the possible implementation methods of each
uilding block and introduce the basic concepts, existing ap-
roaches, and possible problems. Here, we give the taxonomy
f each building block in Fig. 6 (see Refs. [96–114]).In Fig. 6, it
s worth noting that in the Isc part, according to the specific
lgorithm used, the sharding blockchains could be divided into
nstant sharding blockchains and eventual sharding blockchains.
 a

15
Definition 28 (An Instant Sharding Blockchain). In a sharding
blockchain, if there is a committee running a consensus algorithm
with strong consistency inside each shard to process transactions,
then it is called an instant sharding blockchain.

In instant sharding blockchains, the transaction confirmation
is instant, due to the strong consistency property of the intra-
shard consensus algorithm. ELASTICO [31], Chainspace [110], Om-
niledger [58], RapidChain [59], RSCoin [115], etc. are all instant
sharding blockchains.

Definition 29 (An Eventual Sharding Blockchain). In a sharding
lockchain, if there is no committee inside a shard, and the intra-
hard consensus algorithm satisfies weak consistency, then it is
alled an eventual sharding blockchain.

Eventual sharding blockchains are relative to instant ones,
here each shard still relies on PoW, PoS, or other methods to
onfirm transactions. Transactions or blocks are not confirmed
nstantly, and several blocks at the end of a blockchain must be
emoved to obtain stable states. The number of blocks is deter-
ined by the system security parameter. The cross-shard trans-
ction processing in eventual sharding blockchains is different

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

f
s
i

3
b

h
c

u
e
n
d
n
t
T
d
t
P
d
c
t

s
I
b
d
u
n
b
n
c
c

s
p
a

h

f

P

rom the one in instant sharding blockchains due to its weak con-
istency property in each shard. Eventual sharding blockchains
nclude Monoxide [60], Parallel Chains [97], etc.9

.2.3. Instantiation of composing components into a sharding
lockchain system
Next, we take Omniledger [58] as an example to illustrate

ow to use our proposed functional components to compose a
omplete sharding blockchain system.
The system models should first be analyzed. Since Omniledger

ses a partially synchronous BFT algorithm within the shard, the
ntire message transmission model is a partially synchronous
etwork. Besides, Omniledger allows nodes to join the protocol
ynamically, so the node admission model is a permissionless
etwork. Regarding the adversary model, Omniledger assumes
he adaptive and mild adversary adopted by most blockchains.
he intra-shard proportion model is u = 3f + 1, which is
etermined by Isc. As a result, the total proportion is limited
o [0, 1/3). Note that since Omniledger utilizes an underlying
oW blockchain to realize Ns, the honest chain quality decreases
ue to the selfish mining attack. Consequently, the actual total
omputational power proportion of the adversary is constrained
o [0, 1/4]. This will be analyzed in detail in Section 4.2.1.

Next is the implementation method for each component. The
first is the Ns component. In epoch e, Omniledger requires all
nodes that want to participate in epoch e + 1 to find a PoW
olution, and broadcast the found results and their own identities.
n this way, nodes complete the registration on the identity
lockchain, i.e., the underlying PoW blockchain. The block pro-
ucers are treated as selected nodes snodes. Second, Omniledger
ses Randhound (described in detail in Section 5) as the random-
ess generation component Er. A leader of Randhound is elected
y Verifiable Random Functions (VRF), and then all participating
odes execute PVSS for multiple rounds of interactive communi-
ation to generate a secure epoch randomness ξe. Third, the Na
omponent takes in H(0 ∥ ξe) as a seed to compute a pseudo-
random permutation π0,e, and assigns the selected nodes into m
different groups to obtain anodes based on π0,e. Fourth, the shard
reconfiguration component Sr stipulates that log n/m old mem-
bers in each shard are replaced. Similarly, Sr uses H(c ∥ ξe) as
a seed to generate m pseudorandom permutations π1,e, . . . , πm,e
for each shard, and then determines which old members are
randomly replaced by the assigned new nodes in anodes. The
following parts are about transaction processing. Omniledger em-
ploys an improved version of PBFT which is called Omnicon, as
the implementation of Isc. Regarding Cstp, Omniledger utilizes
a client-driven 2PC method to process cross-shard transactions,
where the client acts as a coordinator to complete the collection
and forwarding of proofs for transaction inputs [58].

In this way, we obtain a complete sharding blockchain pro-
tocol. We argue that our components and their outlined com-
position are suitable for most sharding blockchain systems. The
independent design and composability of each component allow
our framework to be used to conceptualize and develop new, yet
unexplored sharding blockchain systems.

3.3. Summary

We provide a summary of sharding blockchain systems in
Table 2.

The notation ‘‘✓’’ means that the system has the property;
‘‘✗’’ means the system does not have the property; ‘‘-’’ denotes

9 Note that Casper FFG is not a sharding blockchain. We refer to it here
ince as far as we know, there is currently no sharding blockchain with a
enalty mechanism, and the penalty mechanism of Casper FFG could be seen as
reference.
16
that the property does not apply to the system. We use ‘‘SGX-
Sharding’’ to denote the system proposed in [103] which utilizes
the trusted hardware Intel SGX. Similarly, PoSBP represents the
system described in [96].

The network model for RapidChain is partially synchronous for
the whole network and synchronous inside a committee. In the
‘‘scalability’’ line, ELASTICO is not scalable since all transactions
will be processed by a final committee. Monoxide is not scalable
since all miners have to verify all transactions in the network,
which is analyzed in Ref. [116].

4. Node selection

In this section, we first introduce basic concepts to realize
node selection for sharding blockchains in Section 4.1. Then exist-
ing approaches to select new nodes are classified into PoW-based
ones and PoS-based ones in Section 4.2. In addition, PoW-based
methods consist of using an underlying blockchain and using a
reference committee. Finally, we analyze potential problems in
the process of node selection in Section 4.3.

4.1. Basic concepts

Node selection is necessary for sharding blockchains to select
qualified shard members. The problems to be solved in the node
selection process are as follows. First, all nodes should have a
consistent view of the selected result, i.e., snode. Second, the
specific requirements that honest node number proportion in
snode should meet for different application scenarios need to be
analyzed. Third, to against various attacks, strict security proofs
should be given for the node selection process.

In permissioned networks, the node selection process is com-
pleted with the participation of CA through providing the identity
registration service for nodes. In permissionless networks, the
node selection process is more complicated, so we discuss this
situation in detail.

During the selection process in a permissionless network, PoW
or PoS is utilized to prevent Sybil attacks [91,117], that is, an ad-
versary increases the probability of becoming a shard member by
creating fake identities. If a PoW-based node selection method is
adopted, a certain mining difficulty needs to be set carefully, such
that enough nodes could find PoW solutions in each period to
replace the corresponding old ones. In a PoS-based node selection
method, a certain number of nodes need to be selected randomly
as new shard members according to the stake held by each node.

The node selection process usually causes a decline in the
proportion of honest nodes for some reason. In order to measure
the degree of decline, we introduce an honest fraction decline
degree parameter ωd, which is described in Definition 30.

Definition 30 (Honest Fraction Decline Degree). Assume that the
onest fraction (computational power or stake) is β . After a node

selection process, let newnodes denote the selected node list.
Assume the honest node fraction in newnodes to be (1 − ωd)β ,
then ωd is said to be the honest fraction decline degree parameter.

In order to ensure that the proportion of honest nodes in the
node selection process will not decrease too much, we describe
the concept of fair selection, which is defined in Definition 31.

Definition 31 (Fair Selection [118]). Let Qf denote the fraction of
honest nodes in a selected node list newnodes and let β denote
the honest fraction (computational power or stake). We say that
a node selection process for shard members is (kf , ωd)-fair if for
all β > 0, there exists some negligible function µf (k) such that
or every k ≥ kf , 0 ≤ ωd < 1, the following condition holds

r[Q ≥ (1 − ω)β] ≥ 1 − µ (k)
f d f

Y.Liu,J.Liu,M
.A.Vaz

Salles
et

al.
Com

puter
Science

Review
46

(2022)
100513

Table 2
Summary of sharding blockchain systems.
System ELASTICO

[31]
Omniledger
[58]

RapidChain
[59]

Chainspace
[110]

SGX-
Shardingsharp
[103]

ZILLIQA [99] PoSBPsharp
[96]

Ethereum
[100]

Monoxide
[60]

Parallel
Chains [97]

RSCoin
[115]

Cl
as
si
fic

at
io
n Node

admission
model

Permission-
less

Permission-
less

Permission-
less

Permission-
less

Permissioned Permission-
less

Permission-
less

Permission-
less

Permission-
less

Permission-
less

Permis-
sioned

Instant or
Eventual

Instant Instant Instant Instant Instant Instant Instant Instant Eventual Eventual Instant

Sy
st
em

m
od

el Network
Model

Partially
Sync.

Partially
Sync.

Partially
Sync./Sync.*

Partially
Sync.

Partially Sync. Partially
Sync.

Partially
Sync.

Partially
Sync.

Partially
Sync.

Partially
Sync.

–

Adversary
Model

≤
1
4 ≤

1
4 ≤

1
3 – ≤

1
3 ≤

1
4 ≤

1
4 ≤

1
4 ≤

1
2 ≤

1
2 –

Transaction
Model

UTXO UTXO UTXO Account Generic♮ Account UTXO Account Account UTXO Account

N
od

e
se
le
ct
io
n

an
d

as
si
gn

m
en

t

Sybil attacks
Resistance

PoW PoW PoW – SGX PoW PoS PoS PoW PoS –

Basic
Method

Reference
Committee

Underlying
Blockchain

Reference
Committee

– SGX Reference
Committee

Hash Func. VDF – VRF –

Distribution
Model

– Binomial Hypergeo-
metric

– Hypergeomet-
ric

– – – – – –

Epoch randomness Hash Func. RandHound
(PVSS)

VSS – SGX Hash Func. – RAN-
DAO+VDF

– VRF –

In
tr
a-
Sh

ar
d

co
ns

en
su

s

Adversary
Model

u = 3f + 1 u = 3f + 1 u = 2f + 1 u = 3f + 1 u = 2f + 1 u = 3f + 1 u = 3f + 1 u = 3f + 1 ≤
1
2 ≤

1
2 u = 3f + 1

Consensus
Algorithm

PBFT Omnicon
(BFT)

Sync BFT PBFT AHL (BFT) PBFT BFT-DPoS BFT PoW PoS BFT

Cr
os

s-
Sh

ar
d

sc
he

m
e

Basic
Algorithm

– 2PC Split 2PC 2PC – – Relay
Transaction

Relay
Transaction

– 2PC

Coordinator – Client-
Driven

Shard-
Driven

– Shard-Driven – – – – – Client-
Driven

Sh
ar
d

re
co

nf
ig
ur

at
io
n Basic Rule – Random

Replacement
Bounded
Cuckoo Rule

– Random
Replacement

– – – – – –

Update
Fraction

– log u 1
2 – log u – – – – – –

Pe
rf
or
m
an

ce Responsive-
ness

✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Scalability ✗⋄ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗⋄ ✗ ✗

The notation ‘‘✓’’ means that the system has the property; ‘‘✗’’ means the system does not have the property; ‘‘–’’ denotes that the property does not apply to the system.
sharp We use ‘‘SGX-Sharding’’ to represent the system proposed in [103] which uses the trusted hardware Intel SGX. Similarly, PoSBP represents the system described in [96].
* The network model for RapidChain is partially synchronous for the whole network and synchronous inside a committee.
⋄ ELASTICO is not scalable since all transactions will be processed by a final committee. Monoxide is not scalable since all miners have to verify all transactions in the network, which is analyzed in Ref. [116].
♣ ‘‘Malicious leader resistance’’ refers to the ability to prevent a malicious adversary from providing false input availability certificates (ref. Definition 32) during cross-shard transaction processing.
♮ As explained in Section 2, ‘‘Generic’’ means a UTXO model or an account model.

17

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

w
‘
i
b
f
g
w

4

m
i
o
s
u

4

s
t
P
b

U
b
a
l
a

h

Fig. 7. PoW-based node selection: using an underlying blockchain.
The definition of ‘‘fair selection’’ in [118] is inspired by [50],
hile it has some obvious differences from the definition of

‘fairness’’ in FruitChains. Fairness in FruitChains only applies to
ts own specially designed mining process, where a fruit and a
lock are mined simultaneously through a single 2-in-1 mining
unction. So the analysis in FruitChains is specific. Definition 31
ives a more general description of the node selection process,
hich could be used to evaluate the fairness of a selection result.

.2. Existing approaches

According to the underlying technologies of node selection
ethods, we divide related approaches into three categories,

.e., PoW-based, PoS-based, and CA-based node selection meth-
ds. As mentioned in Section 3.2, the first two methods are
uitable for permissionless networks, and the latter method is
sed in permissioned networks.

.2.1. PoW-based node selection
A PoW-based node selection approach utilizes PoW mining to

elect qualified nodes where any node who wants to take part in
he protocol must find a PoW solution. There are currently two
oW-based node selection methods, namely, using an underlying
lockchain and using a reference committee.

sing an underlying blockchain. As shown in Fig. 7, an underlying
lockchain is a chain similar to that of Bitcoin [1]. All blocks
re connected by hash pointers. Nodes mine on the basis of the
ast block, and verify if the hash value meets the requirements
ccording to the following condition:

= H(str, nonce, pubi) < D

Here, str is the hash of the last block, and nonce ∈ {0, 1}λ
denotes the potential solution of the PoW. λ is a security pa-
rameter where λ ∈ N. pubi contains some public information
of the node Pi, which is used to prove the identity of the miner.
Generally, pubi consists of the miner’s public key. D is a difficulty
parameter where D = p · 2λ and for all (str, nonce, pki), we have
Pr[H(str, nonce, pki) < D] = p. p is the probability that one node
finds a PoW solution successfully in one single round.

After finding a nonce that meets the requirement, a node
broadcasts the block, i.e., (str, nonce, pki). Then the nodes receiv-
ing the block verify its legitimacy. If the requirements are met,
then the nodes will continue to mine, using H(str, nonce, pki) as
a new str . The block producers, that is, nodes that find valid PoW
solutions successfully, are considered as new shard members.
When there are enough shard members confirmed, shards could
launch a reconfiguration to update members.

Note that the node selection process is necessary for all hy-

brid consensus blockchains, which combines classical distributed

18
Fig. 8. PoW-based node selection: using a reference committee.

consensus algorithms and the blockchain consensus, such as
PeerCensus [55], ByzCoin [56], Solida [57], Hybrid Consensus [84],
Thunderella [119], and Algorand [80]. In Solida [57] and Byz-
coin [56], a committee conducts a reconfiguration whenever a
new block producer is confirmed through the above steps.

Omniledger [58] uses an underlying blockchain to select new
members. Specifically, in epoch e, the node that wants to partici-
pate in epoch e+ 1 tries to find a PoW solution and mines on an
identity blockchain. The identity blockchain in Omniledger plays
the role of an underlying blockchain. When enough number of
nodes for the next epoch is registered on the identity blockchain,
a reconfiguration begins and the protocol enters a new epoch.

Using a reference committee. Another approach uses a reference
committee and a fixed PoW puzzle to select new nodes, which is
shown in Fig. 8.

This approach includes two steps. First, a mining step. In a cur-
rent epoch, nodes use a puzzle specially set to mine. The mining
equation is similar to that of using an underlying blockchain.

h = H(puzzle, nonce, pubi) < D

A node submits his solution to a reference committee CR after
finding a PoW solution successfully, yet the found PoW solutions
do not form a chain. That is, in an entire epoch, the puzzle
remains unchanged until a sufficient number of PoW solutions
are found. Note that in this case, a miner might use a different
public key to continue mine after finding a PoW solution. This
will not influence the system security as long as the adversary’s
computational power is limited.

Second, a new node list confirmation step. After enough num-
ber of PoW solutions are submitted, the reference committee
runs an intra-committee consensus to confirm the new node list,
denoted by newnodes. The intra-committee consensus might be a
BFT style consensus algorithm, where a leader is responsible for
proposing a value, and other nodes vote for the proposal. After
an agreement is reached upon the new node list, the reference
committee broadcasts the committed newnodes to the entire

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

n
v

n
g
s
a
s
t
e
r

4

a
o
d
i
t
i
i
(
c
o
a
r

t
i

W
m
t
e
b
c
t
n
d

W
b
i
c

P
s

etwork. Nodes that are on the committed list are regarded as
alid members of the next epoch.
RapidChain utilizes a reference committee to select new

odes [59]. The puzzle in RapidChain is a fresh randomness
enerated by the reference committee based on verifiable secret
hare (VSS). An adversary could not precompute a PoW solution
head of honest nodes since the randomness is unpredictable. Be-
ides, the PoW mining process is done offline without influencing
he normal operations of the whole protocol. At the beginning of
very epoch, the reference committee reaches an agreement on a
eference block which includes the new node lists for the epoch.

.2.2. PoS-based node selection
PoS-based node selection approaches have the following char-

cteristic: the more stakes a user has, the higher the probability
f being selected. In general, the coins in the system need to be
ivided into small units, and each unit has the right to participate
n the selection of committee members. In this way, it is ensured
hat the probability of being selected as a committee member will
ncrease if a node has more stakes. At the same time, when judg-
ng whether each unit is selected, the verifiable random function
VRF) could be employed. The unique serial number of each unit
ould be regarded as the input of VRF to generate the random
utput and its corresponding proof. Whether a unit is selected as
committee member could be verified publicly by judging if the
andom output satisfies a certain threshold condition.

Similar to PoW-based node selection approaches, there are
wo fundamental ways to use PoS to select committee members,
.e., using an underlying blockchain or not.

ith an underlying blockchain. Using an underlying blockchain
eans that nodes still rely on PoS to generate blocks first, and

hen block producers during a certain time range are consid-
red to be committee members. Some PoS-based underlying
lockchains, such as Ouroboros [54], can be used to confirm
ommittees in a sharding blockchain. The basic process is that
he block producers within a period of time are confirmed as
ew nodes, and the new nodes are randomly allocated to multiple
ifferent shards based on a randomness.

ithout an underlying blockchain. If there is no underlying
lockchain, using PoS to select shard members requires select-
ng multiple nodes at once, such as a committee or multiple
ommittees.
Lee et al. [96] propose a sharding blockchain system that uses

oS to select committee members. The selection process is quite
imple, which uses the following formula H(v’s address ∥ H(b))
mod k. H is a hash function, v represents a validator, b denotes the
last block in the previous epoch, and k is the number of shards. In
this way, validators in [96], i.e., nodes, are assigned into k shards
randomly. Ethereum sharding [100] adopts the PoS-based node
selection method to select shard members.

Parallel Chains [97] is an eventual sharding blockchain system
that uses PoS to directly generate blocks, while there is no com-
mittee in each shard. The blockchain in each shard is built on top
of that of Ouroboros Praos [120].

4.2.3. CA-based node selection
In the permissioned network, the function of the Ns compo-

nent is realized by a CA. Every node that wants to participate
should first complete identity authentication via the CA. When
there are enough nodes (in the initial phase of the protocol),
or at the end of each epoch (during epoch reconfiguration), the
CA will publish a list of nodes participating in the protocol,
i.e., snode, which contains the public key information of nodes.
Only the nodes on the list published by the CA can take part in
further operations of the protocol, i.e., join different shards and
process transactions. The permissioned sharding blockchains that

use CA-based node selection approaches include [93–95].

19
4.3. Problems and future directions

We summarize problems that might occur during the process
of node selection adopting both PoW-based and PoS-based node
selection approaches in the following.

4.3.1. PoW-based node selection
We analyze the potential problems in each kind of PoW-

based node selection approach. First, possible problems of using
an underlying blockchain approach are introduced, including the
impact of attacks (e.g., selfish mining, stubborn mining, etc.). Then
potential threats of using a reference committee are analyzed,
including an adversary’s potential mining advantages and node
censorship attacks by malicious leaders.

Using an underlying blockchain. When an underlying blockchain
is used to select nodes, an adversary could launch the attacks such
as selfish mining [121,122], stubborn mining [123,124], block
withholding [125], and fork after withholding [126], to increase
his proportion of blocks and get more advantages to be selected.
In this case, the chain quality of honest nodes decreases severely.

The selfish mining attack is shown in Fig. 9. In a selfish min-
ing attack, an adversary and honest nodes mine at the same
time. After finding a PoW solution (i.e., a block), an honest node
broadcasts the block to the entire network immediately. On the
contrary, an adversary does not broadcast a block after finding a
PoW solution, yet adopts different strategies to reveal his blocks
in different situations. The blockchain that is known to all honest
nodes is called the public chain, while we name an adversary’s
privately controlled blockchain as a private chain. When the
adversary’s private chain is longer than the public chain, the
adversary does not immediately announce the block after finding
a new PoW solution, i.e., withhold the block. When the length
of the public chain catches up with that of the private chain, the
adversary publishes a certain number of private blocks, making
the new chain longer than the public chain. In this way, honest
nodes will choose to continue mining at the end of the newly
disclosed chain. Selfish mining increases the proportion of blocks
controlled by an adversary. Intuitively, an adversary could waste
honest computational power. When the adversary’s private chain
is longer, he does not publish the block. At this time, even if a
valid PoW solution is found by honest nodes, it will be replaced
by an adversary’s longer chain.

The stubborn mining attack [123] provides an attacker with
more advantages in PoW mining. Stubborn mining is actually an
extension of selfish mining, which wastes honest computational
power by creating more opportunities for competition. Three
basic strategies and their different combinations are proposed
and analyzed in depth [123]. In addition, the block withholding
attack [125] and fork after withholding attack [126] are proposed.
We regard the attacks above as the same type of attack as selfish
mining. By formulating different mining strategies, an adversary
could occupy a higher proportion of all blocks generated than
it deserves. In other words, the chain quality of honest nodes
decreases.

Besides, the eclipse attack [127,128] and network partition
attack [129] could also be used to enhance the effects of selfish
mining type attacks [123]. The key idea of the eclipse attack is to
control all incoming and outgoing connections of a node [127].
The network is divided into three partitions, i.e., an attacker,
a victim, and an honest one’s part. Although some measures
could detect intrusion [130], eclipse attacks are still appealing for
attackers.

These kinds of attacks decreases the honest chain quality

while increasing the fraction of blocks belonging to an adversary.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

(

T
t
p

Fig. 9. Schematic diagram of selfish mining.
e
w
h
t

t
k
f
m
t
t
v
n
t
p

a
t
S
p
a
m
f
d
f

4

a
l

W
a
u

o
b
P
p
n

A formal analysis is given in the notable Bitcoin backbone proto-
col [18] which points out that the ratio of blocks contributed by
an adversary is bounded by

t
n − t
where t and n is the computational power of an adversary and
the entire network, respectively. For example, when t = 1/3
we use fraction to denote simplify the description), t/(n − t)
equals to 1/2. When t = 1/4, t/(n − t) = 1/3. Hence, a 3/4
honest computational power is required to achieve a 2/3 fraction
of honest nodes when using an underlying blockchain to select
new nodes.

Using a reference committee. In a PoW-based member selection
process, two important factors influence the selection results,
i.e., the time advantages of an adversary to mine, and the con-
firmation of a new node list. We give a detailed analysis in the
following.

The time advantages of an adversary to mine mainly refer
to the network latency. The adversary is usually responsible for
network transmission who might have a certain advantage in
mining. In a partially synchronous network, the adversary could
delay messages sent by honest nodes for at most ∆ time, which
is the upper bound of the network delay. On the one hand, the
adversary could acquire a mining puzzle in advance so that he
could start mining ahead of the honest nodes. On the other hand,
an adversary could delay honest miners’ PoW solutions submitted
to a reference committee. The adversary’s network advantage is
a key factor that must be considered when strictly analyzing the
mining process and results. In the analysis of the mining step, the
speed to find a PoW solution needs to be calculated. The mining
step could be treated as independent binary random variables.
The value for each variable is 1 with probability p. So the PoW
solutions found by honest nodes or the entire network could be
estimated by the Chernoff bound [131].

In any case, the adversary could have a certain time advantage
over honest nodes to obtain a mining puzzle. Since even if an
unpredictable randomness (see Section 5.1) is used, an adversary
has the advantage of network latency. If there is no randomness
used as a puzzle, the adversary might learn a puzzle in advance
through various other means such as withholding his PoW so-
lutions. An adversary’s time advantage must be considered in
the analysis of the mining process. Because the adversary will
produce more PoW solutions than expected. To ensure that the
proportion of honest nodes in the finally found PoW solutions
exceeds a certain safety threshold, it is usually required that
the total number of solutions exceeds a certain lower bound. A
concrete analysis of the mining step is referred to [118].

The other factor to consider is the confirmation of a new node
list. After enough number of PoW solutions are found, a reference
committee run an intra-shard consensus to confirm newnodes.
he most commonly employed intra-shard consensus is the BFT-
ype algorithm. In such a BFT algorithm, there is a leader who
roposes a new node list. A malicious leader could ‘‘censor’’ and
20
exclude some honest nodes, to involve more malicious nodes, and
thus harm the system security.

The specific procedures of the node censorship attack are as
follows. Let newnodes and newnodes′ denote two member lists
proposed by a leader and held by an honest node in a reference
committee CR, respectively. A malicious leader might replace a
certain number of honest nodes in newnodes with the same
number of malicious nodes who find the PoW solution after the
replaced honest nodes [118].

In this case, if honest members in CR vote without checking
the validity of newnodes, then safety will be ruined since the ma-
licious nodes proportion on newnodes will exceed the specified
limit. As a result, A will control the committee in the next epoch.
On the contrary, if an honest member only votes when newnodes
quals to newnodes′ held by himself, then the liveness property
ill be broken with a high probability, since the new member list
eld by different honest members may have some differences due
o the network latency.

The above node-censorship attack could be handled by a
hreshold-vote strategy proposed in [118]. A proper threshold
T is chosen for the differences between newnodes received
rom the leader and newnodes′ held by an honest committee
ember. A BFT algorithm needs to be modified in moderation

o be compatible with the threshold-vote strategy. The specific
hreshold-vote rule is as follows. An honest committee member
otes for a list newnodes if and only if the number of different
odes between newnodes and newnodes′ is less than or equals
o kT . The threshold-vote strategy might introduce some new
roblems. For specific analysis, please refer to [118].
The future research directions for PoW-based node selection

pproaches are as follows. First, design a more fair node selec-
ion approach to make the honest fraction decline degree lower.
econd, analyze various attacks that may be encountered in the
rocess of using PoW such as selfish mining attacks. Third, use
strict analysis process to analyze the security of the entire
ining process, and the requirement of each parameter. Fourth,

ully consider the characteristics of the sharding blockchain, and
esign a method for selecting sharding members more suitable
or the sharding blockchain.

.3.2. PoS-based node selection
In a PoS-based node selection process, some vulnerabilities or

ttacks might happen. We separately describe the possible prob-
ems in the two types of PoS-based node selection approaches.

ith an underlying blockchain. In the following, we describe the
ttacks against the PoS-based node selection approaches using an
nderlying blockchain.
Nothing at stake [132] refers to that an attacker tries to mine

n different forks of the chain to obtain higher benefits. In a PoS-
ased blockchain, to generate a fork is not as costly as that in a
oW-based blockchain, where a huge amount of computational
ower might be required. In a PoS-based blockchain, if there is
o protective mechanism, when the blockchain has a fork, a node

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

w
t
p
n

m
i
b
r
t
t
r
i

t
c
s
a
c
b
t
s
t

ill try to mine on both forks to increase the probability of ob-
aining profit. Nothing at stake could be prevented by introducing
unishment mechanisms in the PoS consensus, that is, punish the
odes that generate blocks on different forks.
A grinding attack [133] means that in some PoS consensus

echanisms, the selection of a block producer in the r + 1 round
s affected by a block in a certain round, e.g., round r , or multiple
locks in previous rounds. Namely, the selection results are not
andom and might be biased. In some PoS consensus mechanisms,
he block producer in round r + 1 is usually selected according
o the block generated in round r . If the block producer in round
is controlled by the adversary, to become the block producer

n round r + 1, the adversary might try to continuously generate
different new blocks in round r , i.e., ‘‘grind’’ the generated block
until it is conducive to make the adversary become the next
block producer. Grinding attacks could be prevented by using an
unbiasable randomness such as RandHound [134], to determine
a block producer.

A long range attack [135] means that when an offline node or
a new node joins the network, an adversary forges a blockchain
from the genesis block to the latest block, trying to make the
newly joined node accept this forged blockchain and mine on it.
In a PoW-based blockchain, the longest chain rule or the heaviest
chain rule [49] is usually used to determine which blockchain is
accepted as the valid main chain by all participants. Assuming
A is the main chain, the adversary wants to create a fake chain
B to make newly joined nodes believe that B is the main chain.
In a PoW-based blockchain, new nodes can easily judge A as
he main chain by verifying the difficulty of mining in the two
hains, since the mining difficulty of the blocks in A must be
ignificantly higher than that of B. If the adversary wants to forge
chain with similar mining difficulty, he needs a huge amount of
omputational power, and the attack cost will greatly exceed the
enefits. However, in a PoS-based blockchain, it is much easier
o forge a main chain A. The adversary could bribe the nodes to
ell the important private keys used in the past without spending
oo much to forge a fake chain B, convincing the newly joined
nodes that chain B is the main chain. Long-range attacks could
be prevented by the checkpoint mechanism [52].

Gazi, Kiayias, and Russell [136] propose a stake bleeding attack
against the PoS consensus mechanism. The stake bleeding attack
is mainly implemented after a successful long-range attack. For a
PoS consensus system that does not use a checkpoint mechanism,
after an attacker launches a long-range attack, the newly joined
nodes believe that the adversary’s chain B is the current main
chain, and the transaction generated by the new nodes will be
submitted to chain B for processing. The adversary has full control
of chain B, and could earn a lot of transaction fees and even
launches a double-spending attack [137,138].

Without an underlying blockchain. The problems that might be
encountered in the PoS-based node selection approach without
an underlying blockchain mainly include the following two as-
pects. First, the application of some cryptographic techniques,
e.g., VRF, might bring more computation and communication
overhead. Second, the existence of network delay might affect a
node’s view of the selected new nodes.

The future research directions for PoS-based node selection are
as follows. First, the impacts of various attacks against PoS on
the node selection process and results should be fully considered.
Second, the computation and communication overhead of some
cryptographic tools on practical applications need to be analyzed.
For instance, analyze the time cost required to complete a PoS-
based node selection, and evaluate the impact on system liveness
during reconfiguration.
21
5. Epoch randomness

In this section, we first introduce basic concepts about epoch
randomness in Section 5.1. Then existing approaches to gener-
ate randomness are divided into VRF, PVSS, etc. in Section 5.2.
Additionally, we compare the state-of-the-art distributed ran-
dom beacon protocols in Section 5.3. Finally, we analyze poten-
tial problems and future directions about epoch randomness in
Section 5.4.

5.1. Basic concepts

Epoch randomness is important in sharding blockchains. A
randomness could be used as a fresh puzzle for mining and as
a seed to achieve random node allocation. The problems that the
Er component needs to solve are as follows. First, it is necessary
to determine which nodes are responsible for running Er to gen-
erate the randomness. Second, in each epoch, the time point to
invoke Er needs to be confirmed. Third, the running time, system
overhead, and failure rate of the epoch randomness generation
protocol need to be fully considered. Fourth, the properties of
the randomness generated by Er need to be analyzed to make
it applicable for the sharding blockchain.

Randomness generation could be regarded as an independent
research field and has been studied for a long time. In 1983,
Blum [139] first proposed a coin-tossing protocol that aims at
generating random values between two untrusted parties. In the
same year, Rabin [140] formalized the concept of a random bea-
con, which generates fresh random numbers at regular intervals.
For a group of nodes in need of continuous random numbers,
such protocols can be executed to obtain a reliable source of
randomness.

When a group of untrusted nodes is involved in a consensus
protocol, an important issue is how to fairly generate public
randomness without trusted third parties. However, there may
be several malicious nodes trying to bias the outputs or forcing
the protocol to restart to their advantage. Therefore, the dis-
tributed randomness protocols need some cryptographic building
blocks to ensure fairness and security. Considering distributed
approaches, random beacon protocols need to meet with the
following properties: public-verifiability, unpredictability, bias-
resistance, and availability (liveness), as outlined in [73,134,141].

• Public-verifiability: Any third party not directly participat-
ing in the protocol should also be able to verify the gener-
ated values. As soon as a new random beacon value becomes
available, all parties can verify the correctness of the new
value using public information only.

• Unpredictability: Any node (either honest or malicious)
should not be able to predict (precompute) future random
beacon values.

• Bias-resistance: Neither a single node nor colluding nodes
can bias (influence) the output value to their benefit.

• Availability/Liveness: Neither a single node nor colluding
nodes can obstruct the progress.

In addition to the above four properties, some distributed ran-
dom beacon protocols also have the property of guaranteed out-
put delivery [141,142], which means that any adversary cannot
interfere or prevent honest nodes from obtaining the randomness
output.

In recent years, there has been a substantial amount of new
research related to the generation of distributed randomness in
academia and industry, which are introduced below.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

5

c
t
V
s
[
m

5

w
b
a
a
d
p
i
t
p
t
l
V
t
w
r
w
p
d
a

u
s
a
a
b
s

5

s
n
t
b
i
b
s
t
s
t
g
t
a
p
v
s

p
t
t
o
t
t
e
i

.2. Existing approaches

Current random beacon protocols employ various
ryptographic techniques to generate secure randomness. These
echniques are mainly divided into several categories, namely
RF [143], threshold signature [144], publicly verifiable secret
haring (PVSS) [145,146] and verifiable delay functions (VDF)
147], etc. In this section, we detail those randomness generation
ethods.

.2.1. VRF
The concept of VRF comes from a pseudorandom oracle [148],

hich simulates a random oracle from an a-bit string to a b-
it string using a seed. Formally, there exists a polynomial-time
lgorithm F (·, ·) such that fs = F (s, ·) : {0, 1}a → {0, 1}b
lways holds, where s denoted the seed. Intuitively, such a pseu-
orandom oracle is not verifiable. Therefore, Micali et al. [143]
roposed a new type of pseudorandom oracle, named VRF. That
s, given an input x, the seed-owner should be able to compute
he value v = fs(x) and a proof proving the correctness of v in
olynomial time. The result v = fs(x) is unique and computa-
ionally indistinguishable from a truly random string v′ of equal
ength. With application to the blockchain, the main idea of the
RF is that all nodes (i) use their private keys as part of the input
o generate random numbers, (ii) output random numbers along
ith zero-knowledge proofs, and (iii) verify the correctness of
eceived randomness. Each node combines the output of a VRF
ith other variables (i.e., round numbers), then signs by its own
rivate key. If the resulted randomness is smaller than a pre-
efined threshold, the node can know privately that it is selected
s a leader or a committee member.
In general, the purpose of a VRF is to generate verifiable and

npredictable random values locally. Combined with a consen-
us protocol like PoS, it can dynamically adjust the weight of
ll nodes. So this strategy is scalable and suitable for different
pplications. That is why there are many well-known public
lockchain projects using the VRF as their randomness source,
uch as Algorand [80], Ouroboros Praos [120], and DVRFs [149]

.2.2. Threshold signature
The idea behind threshold cryptographic schemes is to split

ecret information (i.e., a secret key) and computation (i.e., sig-
ature generation or decryption) among multiple parties in order
o remove the risk of a single point of failure. The difference
etween a threshold signature and a general digital signature
s that the former is no longer completed by an individual, but
y a threshold set of participants. In a (t, n) threshold signature
cheme, n represents the total number of participants, and t is
he threshold. When any subset of t (or more) participants jointly
ign the same message, they can get a signature representing
he whole group, but any t − 1 or fewer participants cannot
et a valid signature. Also, anyone can verify the correctness of
he signature using the pre-fixed public key. The general process
bout threshold signatures in randomness generation is that all
arties (i) provide a signature share on a common message, (ii)
erify the received signatures shares, and (iii) integrate the valid
hares to obtain a random output.
There are two methods to ensure the secure key distribution

rocess, one is an initial trusted setup (i.e., a trusted dealer), and
he other is an interactive protocol among all parties (i.e., dis-
ributed key generation protocol (DKG) [150]). The former relies
n trust assumptions which are easy to understand, so we discuss
he latter briefly. The DKG protocol allows multiple participants
o work together to initialize the cryptosystem securely and gen-
rate its public and private keys. While the public key is output
n the clear, the private key is shared by participants through
22
a secret sharing scheme which can be used in group-oriented
cryptosystems. In summary, the threshold signature can avoid
misuse of power and achieve ‘‘fairness’’. Cachin et al. [151] and
Dfinity [98] both employ threshold signatures in their construc-
tions.

5.2.3. PVSS
Secret sharing was first proposed by Shamir [152] in 1979,

which enables a dealer to split a secret among a group of par-
ticipants, each participant obtains a secret share. Shares can be
combined to reconstruct the secret through polynomial inter-
polation. Note that the secret sharing scheme has an important
precondition: both dealers and participants are honest. If some
parties are malicious and send invalid shares, the honest parties
may not reconstruct the secret. To deal with a corrupted dealer or
invalid shares in the reconstruction phase, verifiable secret shar-
ing (VSS) [153] is proposed. In 1996, Stadler [145] proposed PVSS,
where anyone (including participants and third parties) can verify
the correctness of shares through public information only. During
the distribution phase, a dealer computes an encrypted share
along with a non-interactive zero-knowledge proof (NIZK) [154]
for each participant to ensure the validity of encryption. During
the reconstruction phase, the participants recover the original
secret by publishing the properly decrypted shares and the NIZK
proof showing its correct decryption. The general idea of PVSS-
based schemes is that each node (i) privately generates a random
secret value, (ii) broadcasts a commitment and shares of this
secret to all nodes, and (iii) reveals this secret after verification. If
a node fails to do so, other honest nodes can jointly recover the
secret from the received shares.

The schemes including HydRand [141], Scrape [142], Rand∗

protocol family [134] and ALBATROSS [155] are all based on
PVSS. RandHerd [134] also uses collective signing (CoSi) [156]
and ALBATROSS [155] is the first secure random beacon protocol
under the universal composability (UC) framework [157].

5.2.4. Hash functions
Several existing solutions generate hash values as randomness

through leveraging resources of existing systems. For example,
PoW [1] relies on block hashes as a source of public randomness,
proof-of-delay [158] employs a delay function on top of the
PoW block hash, and Caucus [159] is designed in the form of a
hash chain, which is implemented within a smart contract on
Ethereum.

5.2.5. VDF
VDF requires a specified number of sequential steps to com-

pute whether or not it is executed on multiple processors, then,
produces a unique output that can be efficiently and publicly
verified. VDF is useful for constructing randomness beacons from
sources such as PoW-based blockchains, in which powerful min-
ers could potentially manipulate the beacon result by refusing to
post blocks, resulting in producing an unfavorable beacon output.
Therefore, VDFs with a suitable time delay would be sufficient to
prevent attacks, miners will not be able to determine the beacon
output from a given block before it becomes stale [147]. Lenstra
and Wesolowski proposed Unicorn [160] with a sufficiently long
delay parameter (longer than the time period during which values
may be submitted), even the last party to publish its random
value cannot predict the final beacon outcome [147]. RandRun-
ner [161] implements a trapdoor VDF with strong uniqueness and
does not require an agreement protocol for the VDF inputs, which
achieves much lower communication overhead. Additionally, the
Ethereum research team [100] plans to use RANDAO [162] and
VDF in the Ethereum beacon chain to randomly select block
producers. Chia Network [163] plans to use VDFs to support their
proof-of-space and time.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

5

s
d
a
A
l
B
o
r
C
c

5

o
m
r
a
p
p
s
i
a

5

t
a

s
C
s
a
a
i
p
s
p

5

p
m

f
R
l
s

f
t
u
P
d
m
e
s
b
p
M
a

.2.6. Others
In addition to the above typical types, there exists some other

olutions that use various encryption schemes to generate ran-
omness, namely homomorphic encryption (HE) [164] and multi-
uthority ciphertext-policy attribute-based encryption (MA CP-
BE) [165], etc. The homomorphic property of cryptosystems al-
ows nodes to operate the ciphertext directly without decryption.
oth HE-Rand10 [101] and HERB [166] implement the thresh-
ld version of ElGamal as homomorphic encryption to generate
andomness. Moreover, Zhang et al. [102] define a threshold MA
P-ABE protocol and use it as a commit-and-reveal scheme to
onstruct ABERand as a public distributed randomness beacon.

.3. Comparison of distributed random beacon protocols

In the following, we provide a specific comparison of the state-
f-the-art distributed random beacon protocols. Our comparison
ainly focuses on the cryptographic primitives, network models,

andomness properties, and complexity evaluation. The results
re presented in Table 3 wherein n denotes the number of partici-
ants in the network, c denotes the size of a subset in the specific
rotocol. Note that this comparison not only considers protocols
pecifically targeted at implementing random beacons, but also
ncludes approaches that provide a random beacon functionality
s a byproduct of their intended application [73,141].

.3.1. Network model
We divide the network models of the analyzed protocols into

hree categories, namely synchronous, partially synchronous, and
synchronous models (ref. Definitions 1–4).
PoW-based blockchains, such as Bitcoin and Ethereum, as-

ume a synchronous network model. Proof-of-delay [158] and
aucus [159] are also synchronous since they are built on top of
uch PoW-based blockchains. In [134], RandHound and RandHerd
re designed within a synchronous setting while RandShare is
synchronous. HE-Rand [101] is also synchronous as the protocol
s described in rounds. RandRunner is designed for practical de-
loyment scenarios with bounded network delay, while it still en-
ures liveness, public-verifiability, and bias-resistance even under
eriods of full asynchrony [161].

.3.2. Randomness properties
As for randomness properties, ‘‘✓’’ in Table 3 denotes that

rotocols achieve corresponding properties unconditionally. ‘‘✗’’
eans the protocol does not satisfy such properties.
In regard to liveness property, Algorand and Dfinity consider

ailure probabilities of at most 10−12 [80,120], RandHound and
andHerd are 0.08% [134] while RandShare does not guarantee
iveness under full asynchrony since malicious nodes might never
end messages.
For unpredictability, ‘‘↗’’ denotes probabilistic guarantees

or unpredictability, which quickly (exponentially in the waiting
ime) get stronger the longer a client waits after it commits to
sing a future protocol output [141]. In Algorand [80], Ouroboros
raos [120], PoW [1] and Caucus [159], the new randomness
epends on the miner’s or the leader’s secret value. As long as
alicious nodes mine a sequence of blocks or are selected repeat-
dly as leaders, prediction becomes possible. This problem can be
olved by letting honest nodes participate in block production or
e selected as leaders. Therefore, the probability of a successful
rediction decreases exponentially with the number of rounds.
oreover in HydRand [141], nodes are not allowed to be leaders
gain within f rounds (f is the maximum number of byzantine

parties) which only achieves unpredictability after f + 1 rounds.

10 We name the protocol proposed in the paper as ‘‘HE-Rand’’.
23
As for RandRunner, unpredictability relies on a synchronous net-
work model. When nodes cannot disseminate messages within
a bounded network delay, unpredictability is weakened. After
the network conditions normalize, unpredictability is restored
and the recovery time increases linearly with the duration of the
asynchronous period [161].

Finally, for bias-resistance, Algorand [80] and Ouroboros
Praos [120] do not provide this property. As mentioned before,
miners in PoW and Caucus protocols could arbitrarily manipulate
the beacon result (i.e., block timestamps), that is, the result is
biasable.

5.3.3. Complexity evaluation
Complexity evaluation includes communication complexity

(the overall bits transmitted by all nodes per round), computa-
tional complexity (the number of operations by one node per
round), and verification complexity (the number of operations by
an external verifier per round).

Obviously, in proof-of-work [1], proof-of-delay [158], and Cau-
cus [159] protocols, a miner only has to perform one broad-
cast which leads to a communication complexity of O(n). For
Ouroboros Praos, communication complexity is not provided in
the original work [120], here we refer to [141] which infers
that Ouroboros Praos has a communication complexity in O(n),
because the protocol only provides guarantees for eventual con-
sensus and is based upon many of the design principles of PoW
blockchains. Other protocols like Ouroboros [54], Scrape [142],
and RandShare [134] are all based on the PVSS scheme, where
each node commit to a secret value and broadcast a message of
size O(n) to all other nodes, leading to a communication complex-
ity of O(n3). HydRand [141] reduces communication complexity
to O(n2) because only a single node (leader) has to perform the
distribution of PVSS shares per round. RandRunner [161] achieves
a communication complexity of O(n) if all nodes follow the proto-
col and the network is reliable. When concerning an adversarial
leader, it assumes two possible strategies for message dissemina-
tion, namely reliable broadcast and gossip protocol. The former
means every honest node sends any valid message it received to
all other nodes, resulting in a communication complexity of O(n2),
while the latter is suitable for a large number of nodes and the
complexity is O(n log n).

As for computational and verification complexity, proof-of-
work [1] and proof-of-delay [158] achieve high computational
complexity for the reason that both of them rely on solving
cryptographic puzzles. The VRF-based approaches such as Algo-
rand [80], Ouroboros Praos [120], Caucus [159] (after the initial
setup) as well as HE-Rand [101] are efficient, because they only
require the verification of a VRF or hash preimage. The verifica-
tion of RandRunner [161] only requires two hash functions and
one verification algorithm with 2t as exponentiation (T = 2t

where T is the time parameter of the VDF).
To sum up, proof-of-work [1] and proof-of-delay [158] ap-

proaches are suitable for larger and dynamic sets of participants.
RandRunner [161] is very resilient to temporary network delays
or network breaks. Ouroboros [54], RandShare [134], Scrape [142]
and HydRand [141] are more suitable for smaller groups due to
their high communication complexity with the increasing num-
ber of nodes. Nguyen-Van et al. [101] use homomorphic encryp-
tion (ElGamal on elliptic curves) to encrypt shares, while they
do not consider a colluded user (‘‘Requester’’). Cachin et al. [151]
come with a formal security proof in the asynchronous network
model, but it is based on elliptic curve pairings which are not
yet well-established. Both RandHound [134] and RandHerd [134]
divide all the participants into small groups. However, Rand-
Hound does not offer bias-resistance and RandHerd needs DKG
protocol during setup and requires additional ‘‘view-change’’ [43]

Y.Liu,J.Liu,M
.A.Vaz

Salles
et

al.
Com

puter
Science

Review
46

(2022)
100513

Table 3
Comparison of distributed random beacon protocols.
Typical existing
solutions

Cryptographic
primitive(s)

Network model Trusted dealer
or DKG
required

Liveness /
failure
probability

Unpredictabil-
ity

Bias-Resistance Communication
complexity

Computational
complexity

Verification
complexity

Cachin et al.
[151]

Threshold Sig. Async. yes ✓ ✓ ✓ O(n2) O(n) O(1)

Dfinity [98] Threshold Sig.
+ VRF

Sync. yes♯ 10−12 ✓ ✓ O(cn) O(c) O(1)

Algorand [80] VRF Partially Sync. no 10−12
↗ ✗ O(cn)* O(c)* O(1)*

Ouroboros
Praos [120]

VRF Partially Sync. no ✓ ↗ ✗ O(n)* O(1)* O(1)*

Nguyen-Van
et al. [101]

HE + VRF Sync. no ✓ ✓ ✓ O(n) O(1) O(n)

RandRunner
[161]

VDF Async. no ✓ ✗§ ✓ O(n)♣ O(T)‡ O(log T)‡

Ouroboros [54] PVSS Sync. no ✓ ✓ ✓ O(n3) O(n3) O(n3)

RandShare
[134]

PVSS Async. no ✗ ✓ ✓ O(n3) O(n3) O(n3)

RandHound
[134]

PVSS Sync. no 0.08% ✓ ✗ O(c2n)⋄ O(c2n) O(c2n)

RandHerd [134] PVSS + CoSi Sync. yes♯ 0.08% ✓ ✓ O(c2 log n)⋄ O(c2 log n) O(1)

Scrape [142] PVSS Sync. no ✓ ✓ ✓ O(n3) O(n2) O(n2)

HydRand [141] PVSS Sync. no ✓ ↗✓ ✓ O(n2) O(n) O(n)

Proof-of-work
[1]

Hash Func. Sync. no ✓ ↗ ✗ O(n) very high⋆ O(1)

Proof-of-delay
[158]

Hash Func. Sync. no ✓ ✓ ✓ O(n) very high⋆ O(log∆)†

Caucus [159] Hash Func. Sync. no ✓ ↗ ✗ O(n) O(1) O(1)

♯ In Dfinity and RandHerd, nodes are divided into smaller groups, and within each of these groups a DKG protocol is required.
* In Algorand and Ouroboros Praos, the approaches for generating randomness require additional communication and verification steps for the underlying consensus protocols or the implementation of a bulletin board.
Here we do not take the additional steps into consideration.
⋄ In RandHound and RandHerd, c is a security parameter and depends on n. If c is constant, RandHound thereby reduces the asymptotic cost to O(n) and RandHerd further reduces the cost of producing successive
beacon outputs to O(log n) per server.
⋆ In proof-of-work and proof-of-delay, the computational complexity is not dependent on the number of nodes n.
† In proof-of-delay, the verification is executed within a smart contract via an interactive challenge/response protocol which has logarithmic verification complexity O(∆) in the security parameter ∆.
§ In RandRunner, only unpredictability is affected by network asynchrony while all other properties remain unchanged. After the network conditions normalize, unpredictability is restored and the recovery time
increases linearly with the duration of the asynchronous period [161].
♣ In RandRunner, if all nodes execute the protocol properly and the network is reliable, the communication complexity is O(n). When concerning an adversarial leader, the communication complexity changes to O(n2)
(reliable broadcast) or O(n log n) (gossip protocol).
‡ T is the correct nodes? upper bound for the computation time of a VDF.

24

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

i
p
i
A
i
d

5

r
b
r

5

e
t
S
t
t
a
a
e
t
h

p
t

5

s
t
n
g
t
S
p
e
c
d
s
r

t
n
c
e
b

5

m
m
a
t
s
r
t
b

s
t
(
f

i
c
a
s
i
i
w
r

6

t
S
t
p

6

s
i
t
b
o
T
F
r
T
r
r
b
e
t
r

6

p
t

6

p
d

a
t
m

p
f

f the current leader fails to take adequate steps. Dfinity [98]
rovides strong bias-resistance but relies on DKG protocol dur-
ng initialization which increases the communication complexity.
lgorand [80] and Ouroboros Praos [120] achieve better scalabil-
ty while weakening bias-resistance. Caucus [159] can be easily
eployed in a smart contract, but it is easily biased.

.4. Problems and future directions

In the following, we analyze potential problems and future di-
ections related to randomness generation in sharding
lockchains from the following three perspectives, i.e., security
equirements, performance improvements and rigorous analysis.

.4.1. Security requirements
As shown in Table 3, some of these schemes do not guarantee

ither the generation of perfectly unpredictable random values or
hat a value will be generated regardless of adversarial behavior.
pecifically, an adversary might cause a liveness failure, try to bias
he randomness, predict future random beacon outputs before
he honest nodes get the values, or deceive a third party into
ccepting an invalid randomness. Besides, VDF-based approaches
lso have problems that their security depends on very accurate
stimates of the average concrete complexity of certain computa-
ional processes [155] (i.e., the time delay parameter), which are
ard to obtain in practice.
Therefore, how to ensure the security guarantees (randomness

roperties mentioned in Section 5.1) still needs to be studied in
he future.

.4.2. Performance improvements
Generally speaking, the more nodes participating in the con-

ensus, the more secure a system will be. But on the other hand,
he communication overhead also increases with the number of
odes. In Table 3, the methods that do have perfect security
uarantees suffer from higher computational and communica-
ion complexity, especially, some PVSS schemes (Ouroboros [54],
crape [142]) have a complexity of O(n3). Moreover, the ap-
roaches based on threshold cryptographic schemes need to ex-
cute the DKG protocol during the setup phase, which may in-
rease the communication complexity. Besides, most approaches
o not support frequent changes within the nodes set. When
ome new nodes join the network, it takes additional time and
equires transferring more data than the original process.

Consequently, on the premise of ensuring the availability of
he sharding blockchains, how to reasonably design the random-
ess generation process, organize participation in node communi-
ation, balance scalability, and security requirements, and achieve
fficient implementation of the protocol are issues that need to
e resolved in the future.

.4.3. Formal security analysis
The rigorous analysis of a randomness generation protocol

ainly includes formal definitions, precise assumptions, and for-
al security proofs. Formal definitions mean the definitions of
dversary model, network model, and randomness properties
hat a protocol satisfies, while precise assumptions refer to the as-
umptions of the underlying cryptographic schemes. Formal secu-
ity proofs should be strictly logical, which prove that under cer-
ain definitions and assumptions, no adversary can successfully
reak the scheme with overwhelming probability.
As we analyzed above, most approaches are under

ynchronous models that are relatively strong and might be
emporarily violated. For example, in HydRand, any leader which
temporarily) fails to deliver required messages is excluded from
urther participation, and the round duration parameter has to
25
be carefully selected to avoid liveness failures [141]. Thus, how
to address the current limitations should be considered in future
works.

Rand∗ family [134], HydRand [141], and Scrape [142] are typ-
cal representatives of stand-alone protocols, which are specifi-
ally designed to generate randomness. Namely, these protocols
re not used in isolation but as building blocks of more complex
ystems. Therefore, the composability of these protocols is an
mportant issue. In particular, a UC secure protocol ensures that
t can be used as a building block for more complex systems
hile retaining its randomness properties, which is essential for
andomness beacons.

. Node assignment

In this section, node assignment is analyzed. We first give
he basic concepts of node assignment in Section 6.1. Then in
ection 6.2, existing approaches are classified into binomial dis-
ribution and hypergeometric distribution. In addition, potential
roblems and future directions are discussed in Section 6.3.

.1. Basic concepts

The new nodes need to be randomly assigned to multiple
hards. Otherwise, an adversary might gather the colluding nodes
nto a certain shard, thereby controlling the entire shard. In order
o achieve the security of the node assignment, randomness must
e unpredictable, unbiased, and public verifiable. The definitions
f the specific properties of randomness is given in Section 5.1.
he problems in the node assignment process are as follows.
irst, it is necessary to ensure that the entire allocation process is
andom, that is, the adversary cannot bias the allocation process.
his requires that the random number is safe, and a pseudo-
andom number generator is used to generate a corresponding
andom number for each node. Second, the parameters need to
e set reasonably to ensure that the number of honest nodes in
ach group meets the standard. This requires the use of a cer-
ain mathematical model to strictly analyze the final distribution
esult when the node is a non-infinite pool.

.2. Existing approaches

Let n denote the total number of nodes participating in a
rotocol. Let m represent the number of shards, and let u denote
he number of nodes in a single shard.

.2.1. Binomial distribution
The node assignment process is regarded as a random sam-

ling problem. Under the following assumption, the binomial
istribution can be used.
The nodes before the distribution process are assumed to form

n infinite pool. In other words, each time a node is selected from
he infinite pool, the probability that the node being honest or
alicious remains constant.
The probability here refers to an adversary’s computational

ower, which is denoted by ρ. Assume that the target honest
raction in a committee is Q0, which might be 2/3 or 1/2. Let X
denote the number of times that picking a malicious node. The
probability that an adversary’s proportion in a selected commit-
tee is exactly a certain value, e.g., 1 − Q0, is calculated through
the binomial distribution as in Eq. (1).

Pr[X = u(1 − Q0)] =

(
u

u(1 − Q0)

)
ρu(1−Q0)(1 − ρ)uQ0 (1)

When a selected committee is malicious, we say a distribution
is failed, i.e., the fraction of malicious nodes exceeds a predefined

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

t
arget value 1 − Q0. So the cumulative binomial distribution
could be adopted to calculate the failure probability, where X is
supposed to be greater than the value u(1−Q0). Hence, the failure
probability could be calculated as shown in Eq. (2).

Pr[X ≥ ⌈u(1 − Q0)⌉] =

u∑
x=⌈u(1−Q0)⌉

(
u
x

)
ρx(1 − ρ)u−x (2)

Omniledger [58] employs the cumulative binomial distribu-
tion described above.

6.2.2. Hypergeometric distribution
The infinite pool assumption in binomial distribution means

the member selection process does not influence the probability
of being honest or malicious in the selected node. The selection
is done with node replacement, i.e., the selected node has to
be replaced back to the pool. On the contrary, hypergeometric
distribution does not assume an infinite pool, which means the
distribution is done without replacement.

The failure probability is calculated by the cumulative hyper-
geometric distribution, as shown in Eq. (3).

Pr[X ≥ ⌈(1 − Q0)u⌉] =

u∑
x=⌈u(1−Q0)⌉

(
ρn
x

)(n(1−ρ)
u−x

)(n
u

) (3)

n denotes the total number, u is the number in a single shard, ρ is
the adversary’s computational power fraction, and Q0 is the target
honest fraction.

(
ρn
x

)
is the possible case to select x from the total

ρn malicious nodes.
(n(1−ρ)

u−x

)
gives the cases to sample u− x from

the total n(1−ρ) honest nodes.
(n
u

)
computes the cases to select u

nodes from the total n participating nodes. Therefore, the whole
formula computes the probability that in a shard, the adversary’s
node number fraction exceeds (1 − Q0). In sharding blockchains,
given the node number n, shard member number u, and target
honest node number fraction Q0, we can adjust the specific value
of ρ to make the failure probability Pr[X ≥ ⌈(1 − Q0)u⌉] low
enough, e.g., 10−5 or 10−6.

RapidChain [59] and SGX sharding [103] analyze the epoch se-
curity utilizing the cumulative hypergeometric distribution. Hafid
et al. [104] carry out a probabilistic security analysis of sharding
blockchains using tail inequalities such as Hoeffding inequal-
ity [167] to approximate the upper bound of the failure proba-
bility for each epoch.

6.2.3. Other distribution
In fact, both binomial distribution and hypergeometric dis-

tribution are based on random allocation of participating nodes,
while some existing schemes use special node distribution rules.

In PolyShard [168], nodes store and compute on a coded
shard of the same size that is generated by linearly mixing
uncoded shards. PolyShard uses the Lagrange Coded Comput-
ing [169] technology to code shards. Pyramid [170] proposes a
novel layered sharding scheme where nodes are assigned to two
types of shards, namely, i-shard and b-shard. There is a b-shard
connecting two i-shards to commit cross-shard blocks between
the two i-shards.

6.3. Problems and future directions

The processes of node selection and node assignment are
connected together, so we analyze the problems in the whole
procedures.

As shown in Fig. 10, A is used to denote new nodes, i.e., all
nodes that want to participate in the protocol. B represents se-
lected new nodes and C refers to confirmed committees. From
A to B, there must be a mechanism such as PoW to defend
against the Sybil attacks [91]. Furthermore, from B to C, a secure
randomness is in need to assign selected nodes into multiple
committees.
26
6.3.1. The analysis from A to B is ignored
In Omniledger [58] and RapidChain [59], the protocol contains

the steps from A to B and then from B to C. However, they
do not consider the changes in the adversarial proportion from
A to B. In fact, the adversarial proportion in B is larger than
that of A due to several reasons. First, an adversary might have
an advantage in message transfer so that he could start mining
in advance of honest nodes. Second, if a leader in a reference
committee is malicious, then he could launch a node censorship
attack as described in Section 4.3 to increase the proportion of
nodes under his control. Assume that the computational power
proportion of an adversary is ρ, then the proportion of malicious
nodes in B is greater than ρ with a high probability. The analysis
in Omniledger and RapidChain still regards ρ as an initial input,
which would lead to false results after random allocation. As a
result, the confirmed committees in C could be malicious.

6.3.2. The infinite pool assumption is not accurate
The node assignment process is to randomly allocate selected

nodes B, while the number of nodes in B is limited. Whenever a
node is selected, the proportion of malicious nodes in B changes.
Therefore, assuming an infinite pool is inaccurate, the probability
obtained in this way will have a deviation.

6.3.3. The failure rate with cumulative hypergeometric distribution
is imprecise

When computing the failure probability of an epoch in Rapid-
Chain, the failure rates of all committees is calculated through
Eq. (3), which is imprecise. In fact, Eq. (3) could only be used to
compute the failure rate of the first committee. However, after
the current committee is confirmed, the subsequent selection of
committees will be affected by the current one, that is to say,
the parameters of the cumulative hypergeometric distribution
have been changed at this time. Therefore, the calculation of
the epoch failure probability is also inaccurate. The impact of
the first committee on subsequent allocation parameters is not
considered.

7. Intra-shard consensus

As described in the modular design in Section 3, the intra-
shard consensus is the key component for every sharding
blockchain. In this section, we research intra-shard consensus
protocols. In Section 7.1, basic concepts of intra-shard consensus
protocols are given. Based on this, we divide sharding blockchains
into instant and eventual sharding blockchains according to their
intra-shard consensus and give their definitions, respectively.
Section 7.2 introduces the state machine replication algorithms
that may be used in sharding blockchains from the aspects of dif-
ferent network models. Finally, Section 7.3 summarizes potential
problems that might occur in intra-shard consensus protocols.

7.1. Basic concepts

The main purpose of the intra-shard consensus is to effi-
ciently process the transactions within a shard. In a sharding
blockchain system, the intra-shard consensus needs to cooperate
with other shards to commit cross-shard transactions. This re-
quires the intra-shard consensus algorithm to provide availability
certificates of the relevant transaction inputs, that is, to generate
proofs of inputs. The proofs appear in the form of signatures.
In addition, in some sharding blockchains that adopt reference
committees, the intra-shard consensus is also used to confirm
the list of new committee members. The intra-shard consensus
algorithm greatly affects the efficiency of transaction processing.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

s
s
c
T
t
m
i
o
t
a

c
c
i
m
a
c
m
a
a
s

7

u
s

7

b
g
t

i
D

d
s
e
n
B
o
p
B
s

Fig. 10. The process of node selection and node assignment.
t
i
i
s

S
r
s
s

t
n
r

w
v
v
t
d
c
p
2
p
o
f

l
H
t
c
o

s
c
i
c

Several issues need to be considered for intra-shard consen-
us. First, the scalability of the intra-shard consensus algorithm
hould be taken into account. The scalability is related to the
ommunication and computational complexity inside the shard.
he transaction processing capabilities might sharply decrease as
he number of nodes in the shard increases. Second, in order to
eet the special needs of the sharding blockchain scenario, the

ntra-shard consensus algorithm needs to handle different types
f proposals. Third, the relationship between the intra-shard and
he entire network transmission model needs to be taken into
ccount.
Intra-shard consensus algorithms could be divided into two

ategories, i.e., strong consistency consensus algorithms and weak
onsistency consensus algorithms. In a weak consistent (ref. Def-
nition 16) blockchain, a block producer is a single node, deter-
ined by PoW or PoS within each shard. We call such blockchains
s eventual sharding blockchains (ref. Definition 29). In a strong
onsistent blockchain (ref. Definition 20), each shard runs a com-
ittee, and the committee acts as the block producer, running
distributed consensus algorithm, e.g., PBFT, to confirm trans-
ctions and generate blocks. We call such blockchains as instant
harding blockchains (ref. Definition 28).

.2. Existing approaches

In the following, we discuss the algorithms that could be
sed as intra-shard consensus in sharding blockchains, including
trong consistent and weak consistent algorithms.

.2.1. Strong consistency
The intra-shard consensus algorithms for instant sharding

lockchains are usually some classical distributed consensus al-
orithms or some adaptions of them which realize strong consis-
ency.

In classical distributed consensus algorithms, a group of nodes
n a permissioned network realizes state machine replication (ref.
efinition 21), achieving consistency and liveness.
In general, classical distributed consensus algorithms have

ifferent assumptions on the situation of nodes in the network,
uch as whether crash or Byzantine nodes (ref. Definition 22)
xist. It is usually considered that the behaviors of Byzantine
odes include those of crash nodes, so protocols that tolerate the
yzantine nodes are more applicable and robust. In the context
f blockchain, various BFT (ref. Definition 23) protocols have been
roposed. We mainly introduce the research on BFT below since
FT protocols could be well combined with blockchain to form a

o-called hybrid consensus. t

27
According to the network model assumptions, classical dis-
ributed consensus algorithms could be divided into the follow-
ng three categories: classical distributed consensus algorithms
n synchronous networks, asynchronous networks, and partially
ynchronous networks.

ynchronous networks. In the following, we first introduce some
epresentative distributed consensus algorithms under
ynchronous networks, then we describe their applications to
harding blockchains.
(1) Distributed consensus algorithms: As described in Defini-

ion 1, in a synchronous network, the messages sent by honest
odes in a certain round must reach each other before the next
ound. As a result, the message transmission delay ∆ is used as
a parameter in related protocols, which simplifies the protocol
design to some extent.

The Byzantine quorum system [105] first proposes the concept
of a ‘‘quorum’’, which could be seen as the minimum number of
votes required for honest nodes to agree on a proposed value
in a voting round. The quorum is to prevent a malicious leader
from equivocating, that is, sending different proposals to different
honest members in the same round. The concept of a quorum
is applicable in both synchronous and partially synchronous net-
works. Specifically, in a partially synchronous network where the
adversary model is u = 3f + 1, a quorum is set to 2f + 1,
hich means in a voting round, an honest member considers this
oting round to be successful only after collecting at least 2f + 1
otes (including its own). The reason is as follows. Assuming
hat the malicious leader sends different proposals p and p′ to
ifferent members, it is proved by contradiction that p and p′

annot be committed at the same time. Assume that both p and
′ get 2f + 1 votes from u members. Then there are at least
f + 1 + 2f + 1 − (3f + 1) = f + 1 members voting for both
and p′, which is contradictory to the assumption that there are
nly f malicious members, since honest members will only vote
or one proposal value in a round.

Sync HotStuff [106] assumes a synchronous network and uti-
izes the pipeline technology to improve proposals. Different from
otStuff, Sync HotStuff adopts a two-phase leader-based method
o process proposals. The transaction confirmation delay is de-
lared as 2∆ in a steady state where ∆ denotes the upper bound
f message transmission delay.
Other distributed consensus algorithms under the

ynchronous network model include XFT [171], practical syn-
hronous Byzantine consensus [172], Ouroboros-BFT [173], Flex-
ble BFT [174], Hybrid BFT [89], PiLi [175], etc. These schemes
ould be applied to sharding blockchains by adding specific in-

erfaces.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

i
n
s
n
s

B
s

A
p
i
e
a
n
d
p
t
n
p
t
r
p
i

f
r
s
∆

t
n
n
w
a
t
t
n
M
m
r

P
w
a
a
s
d

a
P

t
m
b
a
p
c
c
n
t
t

(

(
p
s

P
n
c
t
s
v
c
i
n
S
s
k
a
m

m
o
v
v
a
v

(2) Combined With Sharding Blockchains: Note that in a shard-
ng blockchain, the message transmission model of the entire
etwork might be different from that inside a shard. That is to
ay, the network model within the shards could be a synchronous
etwork, while the entire network is synchronous or partially
ynchronous.
RapidChain [59] uses a variant of the practical synchronous

yzantine consensus proposed in [172]. The adversary model is
till u = 2f + 1, namely, it could tolerant nearly 1/2 Byzantine
nodes. A leader is selected according to the randomness gen-
erated by the reference committee. The intra-shard consensus
mainly contains four rounds: propose, echo, pending, and accept.

leader broadcasts the message with its hash value in the pro-
ose round. Then every node receiving the message broadcasts
ts hash value among the network in the echo round, to ensure
very honest node obtains all messages sent by the leader. If
malicious leader sends more than one message to different
odes in the propose round, then honest nodes will detect it
uring the echo round, mark the conflicting messages with a
ending tag, and broadcast the pending messages. In this case,
he malicious leader will be replaced. In the normal case, honest
odes that have received f + 1 valid echo messages consider the
roposal as valid and broadcast the hash value with an accept
ag. RapidChain allows a leader to propose a new block while
e-proposing the headers of the pending blocks to facilitate the
rocessing of blocks. Here, pending blocks refer to the blocks that
s not accepted by honest nodes in some round.

RapidChain uses a synchronous network model to achieve a
ault tolerance of nearly 1/2 within the committee, while it sac-
ifices certain transaction processing performance. In the intra-
hard consensus protocol, every node needs to wait for a fixed
time in each round of communication. This is also one of

he differences between synchronous and partially synchronous
etwork model protocols. The parameter of the upper limit of
etwork delay ∆ could be directly used in the synchronous net-
ork model protocols, but not in the partially synchronous and
synchronous network model protocols. Since every node needs
o wait for a fixed time in each round, the transaction confirma-
ion time of the protocol is not related to the actual delay of the
etwork, so that the property of responsiveness is not achieved.
eanwhile, the synchronous network model puts high require-
ents on the network status and is not particularly applicable in

eality.

artially synchronous networks. The partially synchronous net-
ork is a model adopted by most blockchain systems, and it is
lso a model closer to the network in reality. Consequently, there
re many studies in this field. In the following, we first describe
everal typical schemes, then we introduce the combination of
istributed consensus algorithms and sharding blockchains.
(1) Distributed consensus algorithms: The distributed consensus

lgorithms in partially synchronous networks are represented by
axos, PBFT and its improvements.
(i) Paxos
Paxos [108] is designed for database maintenance in dis-

ributed systems. In Paxos, a primary node sends a prepare
essage to more than 1/2 backup nodes of the entire network; a
ackup node verifies the legitimacy of the message, and returns
commit message to the primary node after verification; the
rimary node forms a commit certificate after collecting enough
ommit messages; the primary node sends an accept message
ontaining the commit certificate to the backup nodes; backup
odes verify the legitimacy of the accept message; the node re-
urns an accepted message (corresponding to the accept message)
o the primary node after the verification is passed.

Paxos could tolerate f crash nodes in the u = 2f + 1 model

ref. Definition 12). Since most blockchain systems adopt the

28
Fig. 11. Process of PBFT algorithm.

Byzantine node model, Paxos is combined with blockchains in
only a few studies [176,177].

(ii) PBFT and its improvements
In most sharding blockchains or committee-based blockchains,

the consensus algorithm within a committee is the PBFT algo-
rithm or its adapted version, so the PBFT algorithm is of vital
importance. Hence, in the following, we introduce in detail the
basic process of the PBFT algorithm and some recent research on
its improvement.

PBFT utilizes a similar name to distinguish nodes as Paxos,
i.e., primary and backup nodes. In a partially synchronous net-
work, PBFT assumes the u = 3f + 1 model. Message authentica-
tion codes (MAC) [178] are used to achieve identity authentica-
tion between nodes in PBFT. In the normal cases, PBFT relies on
the operations to process proposals as shown in Fig. 11.

First, in the propose phase, a client (user) uploads a proposal
p to all nodes. Second, in the pre-prepare phase, the primary node
constructs a pre-prepare message (pre-prepare,H(p), s, v), where
H(·) is a one-way hash function, s denotes the sequence number,
and v represents the view number. The primary node sends the
pre-prepare message to all replicas. Third, in the prepare phase,
every replica node confirms that for the same (v, s), no conflicting
preparation message has been received, then broadcasts the pre-
pare message (prepare,H(p), s, v). Fourth, in the commit phase,
after receiving 2f +1 (including its own) valid prepare messages,
a replica consider p as prepared and broadcasts a commit message
(commit,H(p), s, v). Fifth, in the reply phase, after receiving 2f +1
including its own) valid commit messages, a replica consider
as committed, and returns the committed proposal with its

ignatures to the client [29].
If a primary node behaves maliciously or does not respond,

BFT relies on a view-change mechanism to change a primary
ode. A checkpoint mechanism is designed to assist the view-
hange, where the maximum sequence number of all commit-
ed proposals is regarded as a stable checkpoint. The specific
teps of a view-change mechanism are as follows. First, in the
iew-change message broadcast phase, node i broadcasts a view-
hange message vci : (view-change, v + 1, S∗, C,U, i) where v
s the view number, S∗ stands for the current stable checkpoint
umber, C denotes the set of 2f + 1 valid commit votes for
∗, and U is a set that contains the prepared messages whose
erial number is greater than S∗. Second, in the view-change ac-
nowledgment phase, a replica verifies the view-change message
nd constructs a corresponding view-change acknowledgment
essage vcai : (view-change-ack, v + 1, i, j,H(vcj)), where i is

the current replica node, j is the node that sends the view-change
message vcj, and H(vcj) is the hash digest of the view-change
essage. The replica sends vcai directly to the new primary node
f view v + 1. Third, in the new-view broadcast phase, for each
iew-change message, when the primary node collects 2f − 1
iew-change acknowledgment messages for vcj, then vcj is valid
nd put into the set S. The new primary node constructs a new-
iew message nv : (new-view, v + 1, S,U∗) where U∗ includes

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

t
s
v
a
m

s
i
c
t

m
b
a
a
a
o
B
a
T
v
t
t
v

t
m
v
t
B
a
m
m
A
a
o
⊥

r
t
c
o
i
r

f
a
c
b

c
t

Fig. 12. Process of HotStuff algorithm.
o
E
t
c
h
P
c
i

m
t

u
a
c
c
s
a
c
n
T
T
p
c
i
O

c
t
m
s
t
s
s
I
l
l
s
c

E
t
m
T
f

P
t
p
o
a

he current stable checkpoint and a pre-prepare message with the
mallest sequence number after the stable checkpoint. The node
erifies the validity of the messages in S, updates its local states
ccording to U∗, and enter view v + 1. For more details, readers
ay refer to [43].
PBFT achieves the consistency and liveness properties of the

tate machine replication, and the communication complexity
s O(n3) in normal operations. In a view-change process, the
ommunication complexity is O(n4). PBFT needs to be improved
o make it better applied to sharding blockchains.

The HotStuff [109] algorithm is proposed to improve PBFT,
aking the BFT algorithm and blockchain achieve a better com-
ination. HotStuff adopts a partially synchronous network model,
nd the adversary model is u = 3f +1. HotStuff mainly has three
daptions. First, it uses the pipeline technology to process propos-
ls, that is, the message in a round contains a quorum certificate
f the previous round and a new proposal. Second, it adopts the
LS threshold signature to aggregate 2f + 1 vote messages into
single signature, cutting down the communication complexity.
hird, in each round, the leader who is responsible for collecting
otes and sending the proposal will be changed. That is to say,
he view-change occurs in each round. The essence is to integrate
he view-change process into the normal operations by adding a
oting round [29].
As shown in Fig. 12, pa refers to the proposal of node a in

he first round. The message of the first round is denoted as m1.
1 is broadcast by node a. Then the other nodes verify m1 and
ote for it. Node b acts as a leader and collects valid votes. When
he number of valid votes reaches 2f + 1, node b reconstructs a
LS threshold signature using the 2f + 1 valid votes and forms
quorum certificate QC(m1). Then node b constructs a message
2 by combining QC(m1) and a new proposal pb, and broadcasts
2 to other nodes. At this time, node a, c and d act as replicas.
fter receiving m2, they first verify the validity of QC(m1) and pb,
nd then vote to m2 if the verification is passed. The subsequent
perations are similar. Note that the proposal is allowed to be
to ensure the liveness property of the protocol as shown in

ound 4, since it is necessary to consider the situation where
here might be no transaction being uploaded. The linear view-
hange in HotStuff refers to the message sent by the leader since
nly a single threshold signature is in need during view-change
nstead of 2f + 1 votes in PBFT. For more details, readers may
efer to [179].

In addition to PBFT and HotStuff, there are other Byzantine
ault tolerant algorithms in partially synchronous networks, such
s scalable Byzantine fault tolerance [180] and PaLa [111]. They
ould be regarded as independent consensus algorithms or could
e applied to sharding blockchains after some improvements.
(2) Combined with sharding blockchains: The research on the

ombination of Paxos and blockchains [176,177] is little. In con-
rast, most instant sharding blockchains adopt the PBFT algorithm
29
r some variants of it as the intra-shard consensus algorithm.
LASTICO [31] uses PBFT directly in every committee to process
ransactions. However, the committee of each shard in ELASTICO
annot finally complete the commitment of transactions. They
ave to send the signatures to the final committee, who will run
BFT to commit transactions. Therefore, ELASTICO cannot handle
ross-shard transactions, and its transaction processing efficiency
s low.

Omniledger designs Omnicon based on Byzcoin [56], which
akes some adaptions of PBFT. We first introduce Byzcoin and

hen introduce the adaptions of Omnicon.
In Byzcoin, MAC is replaced by digital signatures, and they

se a tree communication model and the CoSi [156] protocol,
scalable collective signing, to cut down message length. CoSi
ombines the well-known Schnorr multi-signatures [181] with
ommunication trees, and generates a single signature on a mes-
age from a group of nodes. CoSi consists of four phases, namely,
nnouncement, commitment, challenge, and response. Byzcoin
ombines CoSi with PBFT’s voting mechanism. A leader’s an-
ouncement is the same as that of the pre-prepare phase in PBFT.
he commitment of other nodes implements the prepare votes.
hen the leader collects enough votes and initiates a challenge
hase, and the other nodes respond to it, which implements the
ommit phase in PBFT. Finally, a single signature from 2f +1 votes
s constructed by a leader. So the message length is reduced to
(1) compared with O(n) in PBFT.
In Omnicon, the authors point out that the CoSi used in Byz-

oin is susceptible to faults since the depth of the communication
ree is much too large. So they change the message propagation
echanism. In each shard of Omnicon, nodes are divided into
everal groups based on some generated randomness, to decrease
he depth of the communication tree. A shard leader requires
ignatures from several group leaders. Each group leader is re-
ponsible for collecting messages inside its corresponding group.
f a group leader does not respond in a certain time, the shard
eader will randomly choose another node in the group as a
eader. If a shard leader is offline or behaves maliciously, Omnicon
till relies on a view-change launched by all shard members to
hange the leader.
ZILLIQA [99] improves the efficiency of PBFT by using the

C-Schnorr multi-signature protocol [181]. The idea is similar
o Byzcoin. In the process of signing, signers are required to
aintain a bitmap which indicates who has signed the message.
he bitmap is first built by a leader and could be used as an index
or a verifier to verify the signature efficiently.

Chainspace [110] uses MOD-SMART implementation [182] of
BFT as the intra-shard consensus. MOD-SMART makes adaptions
o PBFT, where reliable broadcast is substituted for validated and
rovable consensus. SharPer [183] utilizes multi-Paxos, a variant
f Paxos as intra-shard consensus dealing with crash-only nodes,
nd uses PBFT facing byzantine nodes.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

A
s

t
t
a

a
o
3
a
b
b
B

i
t
t
c
e
R
W
a
F
c
t
o
i
i
t
n
t
a
t
t
p

d
c
d
D
b
w

d
t
f
c
p
o
d
e
a
a
t

7

w
T
b
f
a
t
h

s
s
c
m
h
b
M
I
o

synchronous networks. Next, we introduce the distributed con-
ensus algorithms in asynchronous networks.
Fischer, Lynch, and Paterson [184] propose the FLP impossible

heorem. They point out that in a reliable asynchronous network
hat allows node failure, there is no deterministic consensus
lgorithm that could solve the consensus problem.
Honey Badger BFT [107] is a well-known asynchronous BFT

lgorithm, so we take it as a representative and introduce its
perations here. The adversary model of Honey Badger BFT is u =

f +1 where u nodes try to reach agreement on B transactions in
round. The asynchronous BFT algorithms mainly rely on reliable
roadcast (RBC) and asynchronous binary agreement (ABA) as
uilding blocks to realize consensus. The basic concepts of Honey
adger BFT are as follows.
First, in the transactions collection phase, the u participat-

ng nodes all collect transactions submitted by users. Second, in
he transaction threshold encryption phase, each node uses the
hreshold encryption function to encrypt B/u of its transactions
ollected in every single round. Third, in the RBC broadcast phase,
ach node relies on the RBC to broadcast and collect messages.
BC contains two rounds, namely the echo and ready round.
hen a node receives a certain number of ready message on
value, it believes that the value arrives at all honest nodes.

ourth, in the ABA consensus phase, a leader is responsible for
ollecting all encrypted values sent by other nodes and initiating
he ABA algorithm on them. In the ABA algorithm, nodes decide
n whether the total transaction set is valid through multiple vot-
ng rounds. Fifth, in the transaction threshold decryption phase,
f the encrypted transaction set is valid, then each node runs
he threshold decryption algorithm. As long as the number of
odes who complete the decryption exceeds the predetermined
hreshold, i.e., f + 1, the total transaction set could be decrypted
nd the transaction confirmation is completed. At the same time,
he transaction censorship attack [107,185] is prevented since
he transactions appear in the form of ciphertext when a leader
roposes the set. For more details, please refer to [107].
There are some other distributed consensus algorithms un-

er the asynchronous network model, such as [186,187], asyn-
hronous binary Byzantine agreement [151], MinBFT [188], vali-
ated asynchronous Byzantine agreement [189], BEAT [190], and
umbo-MVBA [191,192]. These algorithms mainly rely on reliable
roadcast and binary Byzantine agreement to reach a consensus
ithin the committee.
As far as we know, there is no sharding blockchain that uses a

istributed consensus algorithm in an asynchronous network as
he intra-committee consensus. The reason might be that the con-
irmation of cross-shard transactions relies on the liveness of the
onsensus algorithm in each shard. When a sharding blockchain
rocesses cross-shard transactions, multiple shards need to co-
perate and respond within a certain time, while asynchronous
istributed consensus algorithms generally sacrifice liveness to
nsure security when a network partition occurs. RBBC [193]
dopts a fair leaderless approach to process transactions in an
synchronous network and uses sharded verification where each
ransaction signature is verified by f + 1 to 2f + 1 verifiers.

.2.2. Weak consistency
Eventual sharding blockchains still use PoW, PoS, or other

eak consistency methods to generate blocks in each shard.
here is no committee in each shard. If PoW is used to generate
locks, nodes in a shard need to find the pre-image of the hash
unction that meets the specific requirements. If PoS is adopted,
node needs to check whether it becomes a block producer

hrough some mechanisms like VRF according to the stake it
olds.
30
Monoxide [60] proposes chu-ko-nu mining to realize intra-
hard consensus with PoW. Chu-ko-nu mining is mainly de-
igned to defend against the 1% attack where an adversary fo-
uses his computational power on one single shard. In Monoxide,
iners are required to mine on multiple blockchains using one
ash function. The m block headers at the end of m different
lockchains form a Merkle tree, where the root value of the
erkle tree and a nonce are used as inputs of the hash function.

n this way, the 1% attack could be prevented since the inputs
f the hash function used in mining are related to m blockchains

and change in real-time. However, since the m blockchains are
constantly extended and new blocks are generated, miners need
to collect and verify all newly generated blocks of m blockchains
continuously to ensure their mining inputs are valid. As a result,
miners have to collect and verify all transactions in the network,
so in essence, Monoxide does not achieve scalability [116].

Parallel Chains [97] combines VRF and PoS to generate blocks
in each shard. In each round, each node might become the block
producer of one or more shards out of the m shards. Each node
uses VRF to generate m outputs and corresponding proofs. If
an output is lower than the specific value determined by the
protocol, then the node becomes the block producer of the shard
corresponding to the output. At this time, the node packages
the transactions belonging to the shard to generate a block and
broadcasts the block with the output and proof of VRF on the
entire network.

7.3. Problems and future directions

With the emergence and continuous development of the
blockchain technology, the classic state machine replication algo-
rithms have been continuously researched and improved, since
it matches well in the context of blockchain. However, there
are still some problems hindering its further application. We
summarize these issues from the perspective of instant sharding
blockchains and eventual sharding blockchains as follows, and
point out future research directions.

7.3.1. Instant sharding blockchains
The possible problems and research directions of instant

sharding blockchains mainly include the following points.

• Reducing the communication complexity among shard members.
The distributed consensus algorithms inside a shard generally
rely on multiple voting rounds to reach an agreement. In the
voting process, if each member broadcasts its own signature,
collects and verifies the signatures of all other members, when
the number of members increases, the broadcast and collection
of signatures will cost huge communication bandwidth and
time, thereby reducing the efficiency of the entire protocol. In
particular, in a permissionless sharding blockchain, in order to
ensure that there are sufficient honest nodes in a shard, the
number of shard members needs to reach a certain security
threshold. In this case, how to reduce the communication com-
plexity inside a shard and improve the processing efficiency is
a problem that needs to be solved.

• Malicious committee detection and recovery. In an instant shard-
ing blockchain, multiple committees run distributed consensus
algorithms. Although most sharding blockchains are designed
with a series of assumptions and analyses to ensure that each
committee is honest with a high probability, it is still possible
for a certain committee to be controlled by an adversary. In
this case, how to detect malicious committees through other
honest committees and design a specific mechanism to restore
or replace malicious committees with honest committees is one
of the future research directions.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

•

•

7

t

•

•

Efficient view-change mechanism inside a committee and across
multiple committees. When a view-change occurs in a shard, a
new leader is required to replace the old leader, and the views
of all members in the committee are unified. In this process,
how to reduce the communication complexity among members
is a problem that needs to be solved. In addition, in a sharding
blockchain, a leader not only serves as the message center
inside a shard but also as a coordinator to transfer messages
among different shards. Consequently, the leader has a higher
overhead. How to share the burden of the leader and how
to choose a new leader fairly and reasonably is one of the
future research directions. On the other hand, there could be in-
consistent views among different committees when processing
cross-shard transactions. For instance, a malicious shard leader
might behave honestly inside its shard while behaving mali-
ciously (not transferring key messages among shards) across
shards. To solve the problem, some view-change mechanism
combining multiple committees needs to be designed.
Better combination with sharding blockchains. In sharding
blockchains, the intra-shard consensus is not just used to pro-
cess transactions. In most cases, intra-shard consensus needs to
handle cross-shard transactions. The processing of cross-shard
transactions requires multiple shards to run multiple rounds
of intra-shard consensus, and the target of the consensus is not
just a simple transaction but might be an input of a transaction,
to determine whether an input is available. In this way, there
may be multiple types of inputs for the intra-shard consensus,
and the rules for judging whether the inputs of different types
are valid are also different. Therefore, the details of combin-
ing intra-shard consensus with the entire sharding blockchain
protocol need to be designed more specifically, so as to process
transactions in sharding blockchains more efficiently.

.3.2. Eventual sharding blockchains
In eventual sharding blockchains, there are mainly two poten-

ial problems that need to be handled.

The 1% attack problem. Taking PoW-based sharding blockchains
as an example, an adversary could focus his computational
power on a single shard to mine. If the mining process of
each blockchain in each shard is independent, then for each
blockchain, it is usually required that the computational power
controlled by an adversary cannot exceed 51% (if not consider
selfish mining attacks). Assume that there are m shards, that is,
m parallel blockchains, if the adversary concentrates its compu-
tational power on one of the shards, he only needs 51%/m of
the total computational power to fully control the blockchain.
When m is large enough, 51%/m is approximately equal to 1%,
so an adversary only needs 1% of the computational power to
control the shard. In this case, the blocks in this shard will all
be generated by the adversary, which means that the adversary
has full control over the current shard. The adversary could
launch the double-spending attack, thereby destroying the se-
curity of the entire system. Therefore, in eventual sharding
blockchains, how to prevent the 1% attack while ensuring the
computing, storage, and communication sharding (described
in Section 2.1) simultaneously is one of the future research
directions.
Complicated cross-shard transaction processing. Due to the weak
consistency property of eventual sharding blockchains, the
blocks generated in a shard could not be confirmed as stable
instantly. In general, a block has to reach a certain depth to be
considered stable and valid. In other words, a certain number of
blocks at the end of a blockchain must be truncated to confirm
valid transactions. The number of blocks that is removed is
related to the system security parameter such as 6 in Bitcoin.
As a result, cross-shard transaction processing is difficult in
eventual sharding blockchains. We discuss this in detail in

Section 8.

31
8. Cross-shard transaction processing

In this section, we analyze cross-shard transaction process-
ing in sharding blockchains. In Section 8.1, basic concepts are
given. In Section 8.2, we classify existing approaches regarding
cross-shard transaction processing into three categories, namely,
two-phase commit (2PC) based, transaction split based, and relay
transaction based solutions. For each type of processing method,
its basic process is summarized and typical schemes are dis-
cussed. Section 8.3 provides potential problems and future re-
search directions.

8.1. Basic concepts

In sharding blockchains, the probability for a transaction to be
a cross-shard one is extremely high. The probability increases as
the number of shards grows. As computed in RapidChain [59],
when the number of shards is 16, the proportion of cross-shard
transactions is about 99.98%. So the method to process cross-
shard transactions is of vital importance to the performance of
a sharding blockchain system.

In the process of cross-shard transaction processing, two prob-
lems need to be solved. First, the communication and processing
methods among multiple shards need to be carefully designed. A
transaction usually contains multiple inputs, which might be con-
trolled by different shards. To confirm whether such a transaction
is valid, multiple shards are required to cooperate and complete it
together. If all inputs of the transaction are ready to be spent, and
the sum of the transaction input value equals to that of the output
value, then such a transaction is regarded as valid. On the con-
trary if one of the inputs has already been spent or does not exist,
then the transaction is an invalid one and cannot be committed.
Second, a mechanism is in need to prevent the double-spending
attack, i.e., to prevent an input from being spent multiple times
by different transactions. In a sharding blockchain, since different
inputs are controlled by different shards, the double-spending
attacks are different from those against ordinary blockchains, so
special mechanisms need to be designed according to the actual
situation.

8.2. Existing approaches

The approaches to process cross-shard transactions could be
divided according to whether there is a committee in each shard,
i.e., whether the blockchain is an instant sharding blockchain or
an eventual one. In instant sharding blockchains, the most com-
mon methods to process cross-shard transactions are two-phase
commit based and transaction split solutions. Relay transaction
based solutions are designed for eventual sharding blockchains.

8.2.1. Two-phase commit based approaches
Most cross-shard transaction processing approaches are de-

signed on top of the two-phase commit protocol which contains
a prepare phase and a commit phase. In a 2PC protocol, there is
a coordinator who is responsible for collecting availability certifi-
cates of inputs and transmitting them among the related partic-
ipating shards. To formalize the process of 2PC based solutions,
we give the definition of an availability certificate.

Definition 32 (Availability Certificate). An availability certificate
refers to a proof in the prepare phase of 2PC based cross-shard
transaction processing methods that each shard provides for a
transaction input, to prove that the input is available or unavail-

able.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
Fig. 13. The flowchart of client-driven basic 2PC.
t
f
a
t
c
w
c
i
a

o
m
s

8

e
t
a
a
c

a
b
(
C
p
s
i
s

f
s
B
a
t
a
v

In the prepare phase, a coordinator collects certificates to
prove that the inputs of a transaction are available from different
shards. Such a proof is usually generated by shard members
through running BFT to reach an agreement on if the inputs
are available. So the proof might be some signatures or a single
aggregated signature. Meanwhile, the inputs should be locked to
prevent themselves from being spent by other transactions.

Then in the commit phase, the coordinator sends all availabil-
ity certificates of inputs to all related shards, including input and
output shards. If all inputs are available, then the transaction is
regarded as valid and committed in related shards. The inputs
should be spent and outputs should be created. Else, if at least
one input is unavailable (locked or already spent), the transaction
is invalid. The previously locked inputs should be unlocked.

According to the role of a coordinator, we divide current
cross-shard processing methods into client-driven basic 2PC and
shard-driven basic 2PC.

Client-driven 2PC. The basic procedure is shown in Fig. 13. A
client is responsible for collecting proofs in the prepare phase and
transmitting them to related shards in the commit phase.

Omniledger [58] adopts the client-driven 2PC methods to pro-
cess cross-shard transactions. In the prepare phase, an availabil-
ity certificate is named as a proof-of-acceptance or a proof-of-
rejection. A proof-of-acceptance is generated by a leader of an
input shard committee, i.e., a leader signs on an input, to prove
that the input is ready to be spent.

Shard-driven 2PC. In a shard-driven 2PC protocol, one or more
shards play the role of coordinators. In the prepare phase, the
availability certificates of inputs are generated by input shards.
In the commit phase, a valid transaction will be accepted in all
input and output shards. The confirmation information of the
transaction will be sent to the client. Compared with client-driven
2PC, the burden on a client is released. The client just submits a
transaction and waits for the response.

The flowchart is shown in Fig. 14. Note that in Fig. 14(a),
all input shards act as the coordinators, which means the avail-
ability certificates are transferred by the input shard directly. In
Fig. 14(b), an output shard plays the role of a coordinator, collects
the availability certificates, and forwards them to relative shards.
We argue that in normal cases, the communication complexity of
the two methods above is identical since the messages are simply
collected and forwarded, without being aggregated, so the total
number of messages remains unchanged.

Chainspace [110], RSTBP [194] and FleetChain [195] adopt
the shard-driven 2PC methods to handle cross-shard transac-
tions. The coordinators in Chainspace are the input shards. The
availability certificates are produced by input shard committees
running a BFT algorithm and broadcast among all participating
shards, including input and output shards.
32
8.2.2. Transaction split based approaches
The transaction split based approach is proposed in Rapid-

Chain [59] to handle cross-shard transactions by splitting a multi-
input multi-output transaction into multiple single-input single-
output transactions. A simple example is shown in Fig. 15.

For a transaction tx with two inputs I1 and I2 of shard Cin1
and Cin2, respectively, and one output O belonging to shard Cout ,
a client submits tx directly to the committee members of Cout .
Then Cout splits tx into three following transactions, tx1 : I1 → I ′1,
tx2 : I2 → I ′2 and tx3 : I ′1 + I ′2 → O where I ′1 and I ′2 belong to
Cout . If tx1 and tx2 are committed by Cin1 and Cin2 respectively,
hen tx3 will be executed successfully by Cout and the cross-shard
und transfer process is completed. If there are more inputs for
cross-shard transaction, then each input corresponds to a new
ransaction. Instachain [196] proposes a lock-free, client-driven
ross-shard transactions processing method. The essence is that
hen processing a cross-shard transaction if one of the inputs
an be spent and another input is invalid, the spendable input
s directly spent and transferred to the corresponding output
ddress.
The transaction split based approach simplifies the processing

f cross-shard transactions to some extent, while it introduces
any new problems, which we will analyze in detail in the next
ection.

.2.3. Relay transaction based approaches
Relay transaction based approaches are usually adopted in

ventual sharding blockchains. In eventual sharding blockchains,
here is no BFT running in each committee, so transactions or
vailability certificates will not be confirmed immediately. As
result, 2PC based cross-shard transaction processing methods
ould not be used.
In eventual sharding blockchains, a transaction is considered

s committed after its block reaches a certain depth of the
lockchain such as 6 blocks in Bitcoin. The number of blocks
usually denoted by λ) is usually related to system security.
onsequently, in eventual sharding blockchains, the essence of
rocessing cross-shard transactions is to ensure that the output
hard does not treat the transaction as valid until the transaction
n all related input shards is completely committed, i.e., reaches
ufficient depth.
The basic steps of relay transaction based solutions are as

ollows. First, the miners of the input shard collect the cross-
hard transaction tx, that is, an account A wants to pay an account
y amount of fund. A miner verifies whether the balance of

ccount A is greater than y, and if it is, tx is regarded as a legal
ransaction. Second, a miner finds a PoW solution, constructs
block containing tx, and broadcasts the block. Other miners
erify the block, generate a corresponding relay transaction ψ ,

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

a
T
a
d
f
t
r
i
m

p
i
l
p
c
m
n
p
s
c
s
r

o
s
t
f
c
h
e

8

p
d

8

t
2

C
a

•

Fig. 14. The flowchart of shard-driven basic 2PC.
•

p

S
t

•

•

nd send it to the miners of the corresponding output shard.
hird, the miners of the output shard receive the relay transaction
nd verify the legitimacy of it, that is, ψ has reached the block
epth of λ in the input shard. Fourth, a miner of the output shard
inds a PoW solution, adds valid relay transactions including ψ
o the block, and broadcasts it. When the block containing the
elay transaction ψ reaches a λ depth in the output shard, which
s called a λ-confirmation, it is determined that the y amount of
oney could be spent by the account B.
Monoxide [60] adopts the relay transaction based solution to

rocess cross-shard transactions. Meanwhile, the account model
s utilized in their system. RChain [197] also utilizes a simi-
ar method to transfer value across shards. Buterin [198] also
roposes a cross-shard contract yanking method to deal with
ontracts that are related to multiple shards. The essence of the
ethod is to use the relay transaction. Ostraka [199] adopts a
ode differential environment model, i.e., each node’s ability to
rocess transactions is different. Meepo [200] proposes a cross-
hard protocol including cross-epochs and cross-calls to process
ross-shard transactions. Cross-calls consist of messages from one
hard to the target one. When error transactions occur, Meepo
elies on a replay-epoch to revert the state operation.

Other heterogeneous communication protocols. There are some
ther cross-chain schemes that aim to transfer information or as-
ets between heterogeneous chains. In these cross-chain schemes,
he consensus mechanism, structure, or anything could differ
rom the two blockchains, such as Bitcoin and Ethereum. Typical
ross-chain solutions include notary schemes [201], sidechains,
ash-locking schemes [202], trust exchange schemes [203,204],
tc.

.3. Problems and future directions

Next, we analyze the possible problems of each processing ap-
roach for cross-shard transactions and point out future research
irections.

.3.1. Two-phase commit based approaches
We analyze potential problems in 2PC based approaches from

he following two aspects, i.e., client-driven 2PC and shard-driven
PC.

lient-driven 2PC. Possible problems in client-driven 2PC based
pproaches are as follows.

Malicious behaviors of the leader. In the prepare phase, if an
availability certificate, i.e., a proof of an input, is generated by
a single leader like in Omniledger [58] instead of a committee
running BFT, then a malicious leader might provide false proofs
or fail to respond. If an input is not available while a malicious
leader still insists on signing its legality and providing proof-
of-acceptance, other shards are likely to accept this proof. In
33
this case, a double-spending attack is likely to be successful.
The consistency and security of the entire blockchain protocol
will be severely damaged.

• Transaction input being locked. Letting a client act as a coordina-
tor could lead to an input being locked permanently if the client
fails to send the corresponding proof to related input shards.
This happens when a client is malicious or offline. Note that
in a blockchain system, for a single transaction, its inputs are
usually owned by the same entity. However, in some cases such
as crowdfunding transactions, multiple inputs of a transaction
might belong to different individuals. In this way, if a client
does not provide the corresponding availability certificate, it
could cause the transaction input to be locked and affect the
liveness property of the system.
Increased burden on the client. If a client is responsible for col-
lecting and forwarding availability certificates, the client needs
to record the shard state in the network and the IP addresses
of participating nodes to communicate with the correspond-
ing committee leader. Hence, the storage and communication
overhead of a client is increased a lot, which is not desired.
Especially for lightweight clients, such as those installed on
mobile phones and smart homes, this overhead is impractical.

Therefore, client-driven 2PC approaches might have certain
roblems and are not widely used.

hard-driven 2PC. In shard-driven 2PC based existing approaches,
here are also problems to be solved.

Multiple calls of the BFT algorithm. In most shard-driven 2PC
approaches, to commit a single transaction, input and output
shard committees need to run multiple times of BFT algorithm.
For example, in Chainspace [110], in the prepare phase, every
input shard needs to run one BFT algorithm, and in the commit
phase, every input and output shard also have to invoke the
BFT algorithm. Each BFT call requires communication among
the members of the entire committee, which will cause more
communication and computation overhead to each node. So
how to design a method to process multiple transactions in a
single time is one of the future research directions.
Possible attacks. Shard-driven 2PC approaches might suffer from
different types of attacks. For example, the replay attack is
proposed in [205] against cross-shard transactions. The essence
of the attack is to use the previously generated transaction
input availability certificate to disguise it as a proof of other
transaction input. The way to prevent this kind of attack is
simple: attach the relevant transaction ID information to the
input availability certificate. Another type of attack is the trans-
action flooding attack where an adversary might manufacture
a large number of transactions processed by a certain shard to
cause the system liveness to be broken. Nguyen et al. [206]
propose OptChain which utilizes a novel transaction assign-
ment method to distribute transactions to different shards.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
Fig. 15. Transaction split based approaches.
The method could be applied to common sharding blockchains
to realize better performance. In summary, many cross-shard
transaction processing methods might be at risk of being at-
tacked. In the future, it is necessary to analyze other possible
attacks and design more secure processing methods.

• Malicious coordinators. In 2PC based cross-shard transaction
processing approaches, the role of the coordinator is very im-
portant. In shard-driven 2PC based solutions, the coordinator
is generally a leader of the input or output shard. If a coordi-
nator is malicious, it may delay the collection and forwarding
process of the availability certificates, or even censor some of
them. How to prevent the possible malicious behaviors of a
coordinator is one of the directions of future research.

8.3.2. Transaction split based approaches
In transaction split based approach shown in Fig. 15, e.g.,

RapidChain [59], there might exist several possible problems.

• The way to generate a specific public key managed by Cout is
unclear. The rule determining which shard is responsible for
managing an input is not given. In the general case, it is based
on public keys. In other words, the hash value of the last few
digits of a public key address of a transaction input determines
which shard should manage the input. However, in the process
of transaction split, it is necessary to generate two or more
public key addresses that belong to Cout , that is, I ′1 of tx1 and
I ′2 of tx2 in the above instance. The method to generate such a
public key address that satisfies the special requirement is not
obvious, and the details of how to implement this process are
not given.

• The new generated outputs might be illegally spent. I ′1 and I ′2 are
supposed to be generated by Cout , while the specific generation
process is not given, that is, whether a leader of Cout is respon-
sible for generating I ′1 and I ′2, or whether it is generated by the
entire committee Cout running BFT. As we know, I ′1 and I ′2 are
public key addresses, and behind them, there are corresponding
private keys. How to ensure the private keys are only known
to the owners is not analyzed. If a committee member or the
leader of Cout knows the private keys, I ′1 and I ′2 could be illegally
spent. Also, if one of tx1 and tx2 is illegal, for example, tx1
successes and tx2 fails due to the unavailability of I2, then the
way to retrieve the private key of I ′1 for the client is not given.

• The method to handle multi-output transactions is not given. In
practical applications, some transactions may include multiple
outputs. For example, the outputs of a transaction may include
change returned to the payer. In this case, the method for split-
ting a multi-input multi-output cross-shard transaction into
multiple single-input single-output transactions is not given,
and the whole process will be very complicated.
34
• The number of transactions is increased. Transaction split leads to
an increase in the number of transactions (at least three times
as much as before), so the processing and storage overhead of
the entire system is largely increased.

In summary, the specific implementation details described
above are not given, yet are critical to the system security. In
order for the transaction split based solutions to be more widely
and securely applied, the implementation details need to be
further studied and designed.

8.3.3. Relay transaction based approaches
There might exist some problems in relay transaction based

approaches.

• Transaction confirmation delay is long. For a cross-shard trans-
action, it first needs to get λ-confirmation by the input shard.
Then the corresponding relay transaction is required to obtain
λ-confirmation by the output shard. After this, the cross-shard
transaction is regarded as completed, then account B could
truly own the money and spend it. Therefore, the entire confir-
mation delay of a cross-shard transaction is equal to the time
that at least 2λ blocks are committed.

• Multi-input transactions could not be easily processed by relay
transaction based approaches. Monoxide [60] uses an account-
based transaction model. Its cross-shard transaction processing
method is actually a simplified version, which can only han-
dle single-input single-output cross-shard transactions. In fact,
whether it is an account-based model or a UTXO-based model,
there might be multi-input cross-shard transactions. Taking
the account-based model as an example, a user might have
multiple different accounts, which are controlled by differ-
ent shards. When the user initiates a transaction, he might
use multiple accounts as inputs to complete a single trans-
action. This cannot be achieved in Monoxide [60]. To process
multi-input cross-shard transactions in an eventual sharding
blockchain, a two-phase commit mechanism should be in-
troduced, since some inputs might not be available. In an
eventual sharding blockchain, the confirmation of transactions
and availability certificates is not instant, and it is difficult to
employ a lock-unlock mechanism for transaction inputs. In this
way, an integral cross-shard transaction processing method
will become extremely complicated in an eventual sharding
blockchain, which is an open research direction in the future.

• Once a fork appears in a blockchain, the security of the system
will be severely damaged. Eventual sharding blockchains are
different from instant sharding blockchains. In each shard, the
block confirmation is probabilistic. Even if a block gets λ-
confirmation, the blockchain where the block is located still has

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

9

f
o
t
a
p
a
p
r

9

t
c
t
c
l
o
m
s
l
i
m
a

c
o
c
s
u
r

F
e
S
o
p
n
t
h
t
w

o
t
n
c
o
p

9

r

a
w
T
A

S
p
g
r

9

o
t

C

a certain probability of being replaced by another blockchain,
that is, a fork occurs. In this case, the cross-shard transactions
that are considered valid previously might become invalid,
while the output of the cross-shard transaction may have been
spent by the owner. In this case, it is very difficult to roll
back the system, and the security of the system is seriously
damaged.

. Shard reconfiguration

In this section, we introduce methods to conduct shard recon-
iguration. In Section 9.1, the reason, purpose, and basic steps
f shard reconfiguration are explained. Section 9.2 provides a
axonomy of existing approaches for shard reconfiguration. All
pproaches are divided into reconfiguration through random re-
lacement and under specific rules. Basic steps as well as typical
pproaches for each category are given. Section 9.3 points out the
ossible security and efficiency problems with regard to shard
econfiguration.

.1. Basic concepts

We first explain the reason why a sharding blockchain needs
o be reconfigured. Most blockchain systems require regular re-
onfiguration, including the update of shard members and state
ransmission between old and new shard members. This is be-
ause an adversary could launch a corruption attack by control-
ing a certain node after a certain period of time. If the members
f a committee remain constant, the proportion of committee
embers controlled by an adversary may exceed a pre-defined
afety threshold such as 1/3 in PBFT [43]. This will destroy the
iveness and security of the entire system. Therefore, at regular
ntervals, the old committee members need to be replaced by new
embers to ensure that the number of nodes controlled by an
dversary is always below the safety threshold.
There are three key problems to be considered in shard re-

onfiguration. First, it is necessary to ensure that the number
f honest nodes in each committee in the new epoch after re-
onfiguration exceeds the safety threshold. Second, the system
hould be able to process transactions normally during reconfig-
ration. Third, the corruption attacks will not succeed before the
econfiguration is completed.

The basic procedures of shard reconfiguration are as follows.
irst, in some epoch e, the nodes that intend to participate in
poch e+ 1 are confirmed through some node selection method.
econd, at the end of epoch e, the replacement arrangement of the
ld and new committee members are determined, that is, which
art of the old members in each shard is replaced by which new
odes. Third, the new members of each shard communicate with
he corresponding old members and get the shard UTXO data and
istorical transaction data. Fourth, the old members stop working,
he new members start to process transactions as normal, and the
hole protocol enters into epoch e + 1.
Note that in most existing reconfiguration schemes, only some

f the members in a committee are replaced. The reason is that
he more nodes are substituted, the more time it takes for the
ew nodes to get the historical data, which might affect the effi-
iency of transaction processing. However, the liveness property
f the whole system might be broken during the reconfiguration
rocess.

.2. Existing approaches

We divide existing approaches into reconfiguration through
andom replacement and under specific rules.
35
9.2.1. Reconfiguration through random replacement
Reconfiguration through random replacement means the se-

lection of old members is a random procedure, i.e., each old
member has an identical probability to be replaced. In general,
reconfiguration through random replacement needs the following
steps.

First, in epoch e, a parameter k that represents the number
of members to be replaced is determined by the protocol. Then,
after the node selection and allocation process, the new node list
newnodes is confirmed. Third, for each shard, a seed seedc =

H(c ∥ ξe) is derived, where c is the shard sequence number
and ξe is a randomness. Then for every shard, its seed is used as
one of the inputs of a pseudorandomness generator [92] function
Perm(seedc, n), to generate a permutation πc . πc could be used as
n indicator to select k nodes out of n old shard members. In this
ay, the k old members to be replaced in each shard are selected.
he new nodes could be assigned to m shards in a similar way.
seed seed = H(0 ∥ ξe) is first generated and a permutation π0

could be obtained by computing Perm(seed,mk) since there are
mk new nodes in the list newnodes. At this time, the new commit-
tees for epoch e+1 are determined. Then newly joined members
start to download historical UTXO and transaction data. Finally,
new committees begin to work as normal and the protocol enters
into epoch e + 1.

Omniledger [58] utilizes reconfiguration through random re-
placement where the reconfiguration parameter k is set as log n

m .
GX-Sharding [207] also uses the same reconfiguration rule and
arameter. The above two schemes rely on the epoch randomness
enerated by their protocols as the random seed to complete the
andom replacement process.

.2.2. Reconfiguration under specific rules
The update procedure of committee members could rely on

ther specific rules. We summarize these rules into the following
wo categories.

hronological rule. This rule means that the node replacement is
based on a chronological order, which is similar to the sliding
window rule. Specifically, a new node replaces an old node that
has been in the committee for the longest time. In some protocols
such as Solida [57], every time a node is added, the committee
performs a reconfiguration, and the newest node will replace the
oldest one. Similarly, committee members could be divided into
several parts according to the time when they join the committee.
Each time a reconfiguration takes place, new nodes that find
PoW solutions successfully replace the oldest 1/2 (or 1/k) of the
existing committee members. This replacement rule is adopted in
PaLa [111], Byzcoin [56], etc.

Bounded cuckoo rule. Reconfiguration under the bounded Cuckoo
rule is shown in Fig. 16. This rule dynamically adjusts the mem-
bers of each committee based on the number of active members
in each committee. At the end of epoch e, all committees are
sorted according to the activeness level of all nodes, that is, the
total number of transactions processed during the epoch. The
1/2 committees with the highest activeness are put into a set
A (for ‘‘active’’), and the remaining committees are placed into
a set I (for ‘‘inactive’’). Then, the new nodes confirmed by the
node selection mechanism are randomly assigned to a committee
in the set A according to the epoch randomness ξe. After all
the new nodes are allocated, k nodes are selected from each
committee of set A, and these nodes will be kicked out of these
committees and randomly assigned to committees in the set I .
The reconfiguration procedure is done at this moment, and newly
confirmed committees start to process transactions normally.
RapidChain [59] utilizes the bounded Cuckoo rule to complete
committee reconfiguration.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

9

e

9

c
r
c
p
c
t
P

τ

w
b
t
f
c
e
w
p
m
c
T
s
n
b
d
i

9

c
s
t
r
t
i
r
i

Fig. 16. Reconfiguration under bounded Cuckoo rule.
.3. Problems and future directions

We summarize potential problems that might occur in the
xisting approaches during the shard reconfiguration process.

.3.1. Quantitative analysis of the corruption parameter τ
τ is used to denote the time to complete a corruption pro-

ess for an adversary, which is a crucial parameter in shard
econfiguration determining the system security. If an adversary
ould complete its corruption attack before the committees com-
lete their reconfiguration, then the adversary might control the
ommittee and destroy the system security. Generally speaking,
he following condition applies for sharding blockchains that use
oW to select shard members:

> 2Tepoch

here Tepoch denotes the time of an epoch. In sharding
lockchains that use PoW to select members, nodes that want
o participate in the protocol mine in some epoch e. Then nodes
inding PoW solutions should submit their results to the reference
ommittee or broadcast the results. So in the mining process in
poch e, the identities of new nodes are exposed to an adversary
ho can launch a corruption attack from this time on. When the
rotocol enters into epoch e + 1, new nodes become committee
embers and work normally. So it is required that an adversary
ould not complete its corruption attack until epoch e + 1 ends.
herefore, the total corruption parameter for an adversary should
atisfy τ > 2Tepoch. Tepoch is related to the speed to find a certain
umber of PoW solutions and may vary in different sharding
lockchains. In existing sharding blockchain schemes, there is no
iscussion about the corruption time parameter. The analysis of
t is one of the future research directions.

.3.2. Bootstrapping of new joined members
A new shard member should download historical data of the

orresponding shard [208]. This procedure is usually called boot-
trapping in some literature. During the bootstrapping, there are
wo potential problems for new shard members. One is the secu-
ity problem, where an adversary might produce some fake data
o convince a new member. This kind of attack is easy to launch
n a PoS-based blockchain since the cost of forging a fake chain is
elatively low. The other problem is about the performance, that
s, the downloading of a large amount of data takes a long time,
36
making the system not work properly during reconfiguration. So
how to ensure that honest committee members could confirm the
correctness of the data received, and improve the efficiency of the
entire reconfiguration process is worthy of in-depth study in the
future.

9.3.3. Security analysis of new committees
In reconfiguration solutions through random replacement,

only a fraction of old members is replaced by new nodes. How-
ever, the analysis of random assignment in existing schemes [58]
assumes replacing all committee members instead of a certain
proportion of members, so the analysis results are not accurate.
Every time some members are replaced, it should be guaranteed
that the honest members occupy more than a certain proportion
of the entire committee. The security analysis of the reconfigu-
ration process needs to be more rigorous, taking all shards into
account.

In reconfiguration solutions under the chronological rule, an
adversary could launch targeted corruption attacks on relatively
new nodes. In this way, an adversary with an identical corruption
attack ability could have a higher probability of controlling the
committee. In other words, a stricter requirement is in need of
an adversary’s corruption parameter, and the security level of the
system will become lower.

As for the bounded Cuckoo rule, the committee members in
set I are constantly increasing, and there is no explanation of how
to kick out old members in I . The increase of committee members
will lead to excessive system overhead of the BFT algorithm.
Furthermore, the scenario is not practical in general sharding
blockchains. The reason is that, in order to prevent the transaction
flood attack, the transactions in a sharding blockchain are ran-
domly allocated to different shards. The transaction flood attack
means that an adversary creates a large number of transactions
supposed to be managed by a particular shard. Therefore, the
actual number of transactions processed by each shard is similar,
and there is no obvious gap to distinguish them.

9.3.4. Initial setup of the protocol
In the initial phase of a sharding blockchain protocol, the

method to safely initialize and create multiple genesis blocks
should be designed. This process is usually called the protocol
setup. The protocol setup problem also exists in other general
blockchains. Most existing blockchain protocols assume a trusted

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

s
t
i
t
e
s
i
c

1

a
p
S
a
t
F
d

1

t
m
n
a
I
t
d
r
b
m
r

I
t
g
c
n
p
d
t

a
s
m

1

b
a

1

s
p
s
o
s
d
g
t
g
s

etup, where information such as the genesis block is set by a
rusted third party. In sharding blockchains, the protocol setup
s different from that of general blockchains since it is necessary
o set the genesis block and genesis committee members for
ach shard. The details of these settings deserve a more in-depth
tudy. Besides, the way to initialize the protocol without rely-
ng on trusted setup [209,210] such as using secure multi-party
omputing should be studied in deep.

0. Motivation mechanism

In this section, we introduce motivation mechanisms that
re important in sharding blockchain systems. Section 10.1 ex-
lains the meaning and purpose of a motivation mechanism.
ection 10.2 summarizes the related research from the following
spects, rewards for block producers and leader rewards, penal-
ies for negative behaviors, and rewards based on reputation.
inally, we analyze the related problems and future research
irections in Section 10.3.

0.1. Basic concepts

Blockchain systems need to design a motivation mechanism
o encourage nodes to participate in the protocol. In general, the
ore nodes in the network, the safer the system. Besides, the
ode participating in the protocol needs to consume a certain
mount of communication bandwidth and computational power.
f the corresponding reward is not obtained, the node will lose
he motivation to participate in the protocol. The difficulty in
esigning a motivation mechanism is to ensure that the rewards
eceived by each node are fair and that malicious behaviors can
e punished accordingly. In addition, when analyzing motivation
echanisms, it is usually necessary to assume that all nodes are

ational, i.e., each node’s behavior is to maximize its interests.
Motivation mechanisms consist of incentive and penalty parts.

ncentive mechanisms refer to the rewards for certain contribu-
ions of participating nodes in the blockchain. The rewards are
enerally in the form of tokens in the system. At the same time,
ertain nodes need to be punished by a penalty mechanism for
egative sabotage or malicious behaviors. Generally speaking, in
ublic blockchains, motivation mechanisms need to be carefully
esigned to encourage nodes to participate in the operations of
he protocol.

Since the motivation mechanism is not the focus of this paper,
nd there are very few studies on the incentive mechanism of
harding blockchains, we only briefly introduce the motivation
echanism.

0.2. Existing approaches

We classify motivation mechanisms into rewards for
lockchain producers and leader, penalties for negative behaviors,
nd rewards based on reputation.

0.2.1. Rewards for block producers and leaders
There are multiple shards in a sharding blockchain, and each

hard maintains its own blockchain. Each shard is constantly
roducing blocks, and the block producers should receive corre-
ponding rewards. The block producer here might vary depending
n the blockchain protocol. In an eventual sharding blockchain,
uch as Monoxide [60] and Parallel Chains [97], a block pro-
ucer is an individual node. In this case, a single node will
et a complete block reward. In instant sharding blockchains,
he committee in each shard runs an intra-shard consensus al-
orithm to generate blocks, so all members in the committee

hould get the corresponding block rewards. The rewards could

37
be further distributed fairly according to the contributions of each
member, i.e., the amount of communication and the number of
transactions processed.

In instant sharding blockchains, a committee in a shard runs
the BFT algorithm, which requires the collaboration of a leader.
In addition, a leader is usually responsible for collecting, merg-
ing, and forwarding of messages within the committee, so its
computation and communication costs are higher than the other
committee members. Therefore, the incentive mechanism within
the committee should be more elaborately designed to ensure the
fairness of reward distribution.

Wang and Wu [114] propose Lever as an incentive mecha-
nism to distribute rewards among rational stakeholders in BFT
consensus algorithms, and they further apply it to the sharding
blockchain. Manshaei et al. [211] conduct an analysis of the mo-
tivation mechanisms in sharding blockchains based on the game
theory. They propose an incentive-compatible reward mechanism
to encourage shard members to participate in the protocol.

10.2.2. Penalties for negative behaviors
In a sharding blockchain, some negative behaviors need to

be punished. Negative behaviors could be further divided into
two categories. One is sabotage behaviors, which can also be
understood as passive behaviors, such as committee members not
voting on the leader’s valid proposals, or a leader not proposing
new blocks or transactions within a specified time. The other
is malicious behaviors, such as a leader proposing two different
proposals (blocks or transactions) in the same round, or the block
proposed by a leader contains invalid transactions. Besides, com-
mittee members might vote for more than one proposal message
in the same round. In general, the establishment of a penalty
mechanism first requires nodes to submit a certain deposit be-
fore participating in the protocol, e.g., Casper FFG [52]. When
a malicious behavior is detected, the deposit may be deducted
accordingly.

10.2.3. Rewards based on reputation
The reputation based motivation mechanism originates from

the cooperative P2P scenarios, e.g., distributed storage systems
[212] and is introduced to the blockchain area [213]. Reputation
usually refers to the unified evaluation and scoring of all nodes
based on the past performances of participating nodes, including
corresponding time, the number of transactions processed, and
the number of malicious behaviors that are related to the nodes.
In this process, different behaviors may come with different eval-
uation weights. Each participating node may eventually get a
score, and the score will be updated as the system advances.
When nodes perform well and participate actively, their rating
scores will grow. On the contrary, if a node loses response or
is detected to behave maliciously, then the node’s score will
decrease. The rewards in the system will be distributed according
to each node’s score. Nodes with higher reputation will get more
rewards. Bugday et al. [214] apply learning methods to the es-
tablishment of node reputation in the blockchain, where the node
reputation is dynamically changing. Huang et al. [112] utilize high
incentives to motivate nodes to behave themselves in the shard-
ing blockchain. Similarly, the authors adopt a reputation-based
evaluation system to measure the different processing capabil-
ities of each node. CycLedger [113] mainly uses the reputation
to evaluate the mining ability of each miner. Block rewards are
allocated according to the reputation value of each miner.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

1

1

t
b

g
s
g
P
e
f
C
c
h
b
t
M
p
p
t
s
a

c
f
c
t
n
i
t
I
l
s

1

c
T
e
a
a

1

p

1

b
b
m
p
n
M
o
t
d

a
e
o
t
r
s

0.3. Problems and future directions

0.3.1. Specific considerations for sharding blockchains
The establishment of a motivation mechanism needs to take

he differences between sharding blockchains and ordinary
lockchains into account.
First, according to the various intra-committee consensus al-

orithms, the distribution of rewards for committee members
hould be more specifically designed to realize fairness. In al-
orithms, especially those that adopt a stable leader such as
BFT [43], The leader is of vital importance to the stable op-
ration of the system. In each round, the leader is responsible
or broadcasting a proposal and collecting votes in the system.
onsequently, the leader will have a higher communication and
omputation overhead than other members, so it should obtain
igher rewards. However, in this way, all members will hope to
ecome a leader, and malicious nodes might take the opportunity
o launch a view-change operation to replace the old leader.
oreover, an adversary might launch a DoS attack or network
artition attack against the leader, causing its network to be
aralyzed and replaced by a new leader. Relatively speaking, in
he BFT algorithms that employ a continuously changing leader
uch as HotStuff [109], it is easier for the incentive mechanism to
chieve fairness.
Second, the influences caused by cross-shard transaction pro-

essing need to be considered. A coordinator is responsible for the
orwarding of availability certificates, that is, to accomplish the
ommunication among shards. The work of a coordinator needs
o be carefully considered when designing a motivation mecha-
ism. There may also be some malicious behaviors. For example,
n a client-driven 2PC method, a client might not forward the
ransaction input availability certificate within a specified time.
n sharding blockchains using shard-driven 2PC, an input shard
eader might not forward availability certificates to other related
hards.

0.3.2. Detailed analysis of the motivation mechanism
As far as we know, no detailed theoretical analysis has been

onducted on the motivation mechanism of sharding blockchains.
he analysis requires a certain financial foundation, e.g., Nash
quilibrium theory [215]. Therefore, for the sharding blockchains,
reasonable, comprehensive, and secure motivation mechanism
nd strict analysis of it are the future research directions.

1. Related work

In the following, we introduce the related work from different
erspectives.

1.1. Survey on sharding blockchain systems

Wang et al. [73] give an overview of the research on sharding
lockchain systems. However, their classification of the sharding
lockchain components is abstract, and they do not provide a
ore in-depth analysis for each component. In contrast, in our
aper, we provide a more complete characterization of compo-
ents and their composition into a sharding blockchain system.
oreover, for each independent component, we provide a tax-
nomy of the existing approaches for that component. In addi-
ion, we deeply analyze possible problems and future research
irections, which are of great importance to related researchers.
Yu et al. [216] take each existing scheme as a starting point

nd give basic details of each sharding blockchain scheme. How-
ver, they do not provide a macro vision and overall classification
f sharding blockchain systems. Our paper provides a systematic
axonomy, and we also analyze related research on the secu-
ity model and motivation mechanism of sharding blockchain
ystems that are not mentioned in the previous research.
38
11.2. Modular analysis of sharding blockchains

Avarikioti et al. [116] provide a relatively formalized analy-
sis of sharding blockchain systems, and propose some evalua-
tion indicators, including communication, computation, storage
complexity, and the scaling factor. Zamyatin et al. [72] analyze
communication across distributed ledgers. Their analysis includes
cross-shard communication between homogeneous blockchains
and cross-chain swap such as sidechains between heterogeneous
blockchains. Han et al. [217] analyze shard allocation protocols
for sharding blockchain systems. These studies mainly focus on a
certain part of sharding blockchains, while our study combines a
unified framework with thorough component analysis.

11.3. Blockchain consensus

Bano et al. [47,218] study consensus mechanisms in the age
of blockchain, including classical consensus, proof-of-X consen-
sus, and hybrid consensus. Garay and Kiayias [219] provide a
consensus taxonomy in the blockchain era based on different
network, setup, and computational assumptions. In their paper,
consensus mechanisms are divided into consensus in the point-
to-point setting, consensus in the peer-to-peer setting, and ledger
consensus. Alsunaidi and Alhaidari [220] conduct a comprehen-
sive survey on popular blockchain consensus algorithms, focusing
on their security and performance. Nguyen and Kim [221] clas-
sify existing blockchain consensus algorithms into proof-based
consensus and voting-based consensus. Xiao et al. [222] carry
out a survey on blockchain consensus protocols and identify five
core components, namely block proposal, block validation, infor-
mation propagation, block finalization, and incentive mechanism.
By contrast, our study conceptualizes functional components of
sharding blockchain systems, going beyond consensus.

11.4. Blockchain scalability

Some studies formalize specific properties to be followed
by different solutions to the scalability of blockchain systems,
but without aiming at a broad review as our study does. Xie
et al. [223] study the scalability problem of blockchain from
the perspectives of throughput, storage, and networking. Kim
et al. [224] analyze existing solutions to realize blockchain scale-
out and classify them into different types, i.e., on-chain, off-chain,
side-chain, child-chain, and inter-chain. Zhou et al. [225] sum-
marize existing scaling schemes and provide potential research
directions for solving the blockchain scalability problem.

12. Conclusion

This paper decomposes sharding blockchains into multiple
components and analyzes the basic concepts, existing approaches,
and potential problems of each component. On this basis, design-
ing a new sharding blockchain system could be simplified into
composing several different components. In this way, each com-
ponent could be improved separately according to the current
latest research, and the improved component could be integrated
into a whole sharding blockchain system without affecting the
security of other parts and the entire system. For each compo-
nent, the possible problems and future research directions that
are proposed in our paper are worthy of attention. We believe
that our systematic and comprehensive research on sharding
blockchains could give insights to future researchers.

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513

C

s
M
&
e
W
–

D

c
t

A

t
t

o
d
6 ,
t
t
C
C
L
C

R

RediT authorship contribution statement

Yizhong Liu: Conceptualization, Methodology, Formal analy-
is, Writing – original draft. Jianwei Liu: Project administration.
arcos Antonio Vaz Salles: Conceptualization, Writing – review
editing. Zongyang Zhang: Supervision, Writing – review &

diting. Tong Li: Formal analysis, Writing - original draft. Bin Hu:
riting – review & editing. Fritz Henglein:Methodology, Writing
review & editing. Rongxing Lu: Methodology.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

Our deepest gratitude goes to the editors and reviewers for
heir careful work and meaningful suggestions that help improve
his paper.

This work is supported by the National Key R&D Program
f China (2021YFB2700200), the National Natural Science Foun-
ation of China (U21B2021, U21A20467, 62202027, 61972017,
1972018, 61972014, 72031001, 61972310, 61932011, 61972019)
he Beijing Natural Science Foundation, China (M22038, M21031),
he Fundamental Research Funds for the Central Universities,
hina (YWF-22-L-1039), the CCF-Huawei Huyanglin Foundation,
hina (CCF-HuaweiBC2021009), and the Yunnan Provincial Key
aboratory of Blockchain Application Technology (Cultivation),
hina Open Project (YNB202101).

eferences

[1] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, Working
Paper, 2008, https://bitcoin.org/bitcoin.pdf.

[2] D. Johnson, A. Menezes, S.A. Vanstone, The elliptic curve digital signature
algorithm (ECDSA), Int. J. Inf. Sec. 1 (1) (2001) 36–63.

[3] D. Boneh, M. Drijvers, G. Neven, Compact multi-signatures for smaller
blockchains, in: Advances in Cryptology - ASIACRYPT 2018 - 24th In-
ternational Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, 2018, pp. 435–464.

[4] J. Coron, Y. Dodis, C. Malinaud, P. Puniya, Merkle-Damgård revisited:
How to construct a hash function, in: Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 14-18, 2005, Proceedings, 2005, pp. 430–448.

[5] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J.A. Kroll, E.W. Felten, SoK:
Research perspectives and challenges for bitcoin and cryptocurrencies,
in: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, 2015, pp. 104–121.

[6] M.S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, M.H. Rehmani,
Applications of blockchains in the internet of things: A comprehensive
survey, IEEE Commun. Surv. Tutor. 21 (2) (2019) 1676–1717.

[7] M.A. Khan, K. Salah, IoT security: Review, blockchain solutions, and open
challenges, Future Gener. Comput. Syst. 82 (2018) 395–411.

[8] K. Gai, J. Guo, L. Zhu, S. Yu, Blockchain meets cloud computing: A survey,
IEEE Commun. Surv. Tutor. 22 (3) (2020) 2009–2030.

[9] R. Yang, F.R. Yu, P. Si, Z. Yang, Y. Zhang, Integrated blockchain and edge
computing systems: A survey, some research issues and challenges, IEEE
Commun. Surv. Tutor. 21 (2) (2019) 1508–1532.

[10] J. Xie, H. Tang, T. Huang, F.R. Yu, R. Xie, J. Liu, Y. Liu, A survey
of blockchain technology applied to smart cities: Research issues and
challenges, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2794–2830.

[11] B. Egelund-Müller, M. Elsman, F. Henglein, O. Ross, Automated execution
of financial contracts on blockchains, Bus. Inform. Syst. Eng. 59 (6) (2017)
457–467, Nominated for Association of Information Systems Best Paper
Award 2017.

[12] P.C. Treleaven, R.G. Brown, D. Yang, Blockchain technology in finance,
Computer 50 (9) (2017) 14–17.

[13] I. Eyal, Blockchain technology: Transforming libertarian cryptocurrency

dreams to finance and banking realities, Computer 50 (9) (2017) 38–49.

39
[14] K. Korpela, J. Hallikas, T. Dahlberg, Digital supply chain transformation
toward blockchain integration, in: 50th Hawaii International Conference
on System Sciences, HICSS 2017, Hilton Waikoloa Village, Hawaii, USA,
January 4-7, 2017, 2017, pp. 1–10.

[15] T. Neudecker, H. Hartenstein, Network layer aspects of permissionless
blockchains, IEEE Commun. Surv. Tutor. 21 (1) (2019) 838–857.

[16] M. Saad, J. Spaulding, L. Njilla, C.A. Kamhoua, S. Shetty, D. Nyang, A.
Mohaisen, Exploring the attack surface of blockchain: A comprehensive
survey, IEEE Commun. Surv. Tutor. 22 (3) (2020) 1977–2008.

[17] M. Conti, S.K. E., C. Lal, S. Ruj, A survey on security and privacy issues of
bitcoin, IEEE Commun. Surv. Tutor. 20 (4) (2018) 3416–3452.

[18] J.A. Garay, A. Kiayias, N. Leonardos, The bitcoin backbone protocol:
Analysis and applications, in: Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part II, 2015, pp. 281–310.

[19] R. Pass, L. Seeman, A. Shelat, Analysis of the blockchain protocol in
asynchronous networks, in: Advances in Cryptology - EUROCRYPT 2017
- 36th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, 2017, pp. 643–673.

[20] A. Hafid, A.S. Hafid, M. Samih, Scaling blockchains: A comprehensive
survey, IEEE Access 8 (2020) 125244–125262.

[21] J. Poon, T. Dryja, The bitcoin lightning network: Scalable off-chain instant
payments, 2016, https://lightning.network/lightning-network-paper.pdf.

[22] A. Kiayias, O.S.T. Litos, A composable security treatment of the lightning
network, in: 33rd IEEE Computer Security Foundations Symposium, CSF
2020, Boston, MA, USA, June 22-26, 2020, 2020, pp. 334–349.

[23] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, S. Ravi, Concurrency
and privacy with payment-channel networks, in: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp.
455–471.

[24] R. Khalil, A. Gervais, Revive: Rebalancing off-blockchain payment net-
works, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, 2017, pp. 439–453.

[25] S. Dziembowski, L. Eckey, S. Faust, D. Malinowski, Perun: Virtual payment
hubs over cryptocurrencies, in: 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, 2019, pp.
106–123.

[26] P. Gazi, A. Kiayias, D. Zindros, Proof-of-stake sidechains, in: 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, 2019, pp. 139–156.

[27] A. Kiayias, D. Zindros, Proof-of-work sidechains, in: A. Bracciali, J. Clark,
F. Pintore, P.B. Rønne, M. Sala (Eds.), Financial Cryptography and Data
Security - FC 2019 International Workshops, VOTING and WTSC, St. Kitts,
St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers, in:
Lecture Notes in Computer Science, vol. 11599, Springer, 2019, pp. 21–34.

[28] J. Poon, V. Buterin, Plasma: Scalable autonomous smart contracts, 2017,
https://www.plasma.io/plasma-deprecated.pdf.

[29] Y. Liu, J. Liu, Z. Zhang, T. Xu, H. Yu, Overview on consensus mechanism
of blockchain technology, J. Cryptol. Res. 6 (4) (2019) 395–432.

[30] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W.C. Hsieh, S. Kanthak, E.
Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao,
L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, D. Woodford, Spanner:
Google’s globally distributed database, ACM Trans. Comput. Syst. 31 (3)
(2013) 8:1–8:22.

[31] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, P. Saxena, A secure
sharding protocol for open blockchains, in: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, 2016, pp. 17–30.

[32] D. Deuber, B. Magri, S.A.K. Thyagarajan, Redactable blockchain in the
permissionless setting, in: 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019, 2019, pp. 124–138.

[33] G. Ateniese, B. Magri, D. Venturi, E.R. Andrade, Redactable blockchain
- or - rewriting history in bitcoin and friends, in: 2017 IEEE European
Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April
26-28, 2017, 2017, pp. 111–126.

[34] F. Reid, M. Harrigan, An analysis of anonymity in the bitcoin system, in:
PASSAT/SocialCom 2011, Privacy, Security, Risk and Trust (PASSAT), 2011
IEEE Third International Conference on and 2011 IEEE Third International
Conference on Social Computing (SocialCom), Boston, MA, USA, 9-11 Oct.,
2011, 2011, pp. 1318–1326.

[35] M.C.K. Khalilov, A. Levi, A survey on anonymity and privacy in bitcoin-like
digital cash systems, IEEE Commun. Surv. Tutor. 20 (3) (2018) 2543–2585.

[36] D. Chaum, Blind signature system, in: Advances in Cryptology, Proceed-
ings of CRYPTO ’83, Santa Barbara, California, USA, August 21-24, 1983,
1983, p. 153.

https://bitcoin.org/bitcoin.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb2
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb2
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb2
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb3
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb4
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb4
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb4
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb4
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb4
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb4
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb4
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb5
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb5
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb5
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb5
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb5
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb5
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb5
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb6
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb6
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb6
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb6
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb6
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb7
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb7
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb7
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb8
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb8
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb8
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb9
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb9
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb9
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb9
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb9
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb10
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb10
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb10
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb10
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb10
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb11
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb11
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb11
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb11
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb11
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb11
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb11
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb12
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb12
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb12
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb13
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb13
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb13
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb14
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb14
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb14
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb14
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb14
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb14
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb14
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb15
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb15
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb15
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb16
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb16
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb16
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb16
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb16
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb17
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb17
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb17
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb18
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb19
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb20
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb20
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb20
https://lightning.network/lightning-network-paper.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb22
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb22
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb22
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb22
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb22
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb23
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb24
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb24
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb24
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb24
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb24
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb24
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb24
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb25
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb25
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb25
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb25
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb25
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb25
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb25
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb26
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb26
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb26
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb26
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb26
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb27
https://www.plasma.io/plasma-deprecated.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb29
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb29
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb29
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb30
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb31
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb31
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb31
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb31
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb31
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb31
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb31
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb32
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb32
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb32
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb32
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb32
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb33
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb33
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb33
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb33
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb33
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb33
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb33
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb34
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb35
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb35
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb35
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb36
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb36
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb36
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb36
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb36

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
[37] E. Heilman, F. Baldimtsi, S. Goldberg, Blindly signed contracts: Anony-
mous on-blockchain and off-blockchain bitcoin transactions, in: Financial
Cryptography and Data Security - FC 2016 International Workshops,
BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers, 2016, pp. 43–60.

[38] F. Zhang, K. Kim, ID-based blind signature and ring signature from
pairings, in: Advances in Cryptology - ASIACRYPT 2002, 8th International
Conference on the Theory and Application of Cryptology and Information
Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings,
2002, pp. 533–547.

[39] S. Sun, M.H. Au, J.K. Liu, T.H. Yuen, RingCT 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency
monero, in: Computer Security - ESORICS 2017 - 22nd European Sympo-
sium on Research in Computer Security, Oslo, Norway, September 11-15,
2017, Proceedings, Part II, 2017, pp. 456–474.

[40] S. Bowe, A. Gabizon, M.D. Green, A multi-party protocol for construct-
ing the public parameters of the pinocchio zk-SNARK, in: Financial
Cryptography and Data Security - FC 2018 International Workshops,
BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018,
Revised Selected Papers, 2018, pp. 64–77.

[41] I. Miers, C. Garman, M. Green, A.D. Rubin, Zerocoin: Anonymous dis-
tributed E-cash from bitcoin, in: 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, 2013, pp. 397–411.

[42] R. Schollmeier, A definition of peer-to-peer networking for the classifica-
tion of peer-to-peer architectures and applications, in: 1st International
Conference on Peer-To-Peer Computing (P2P 2001), 27-29 August 2001,
LinkÖPing, Sweden, 2001, pp. 101–102.

[43] M. Castro, B. Liskov, Practical Byzantine fault tolerance, in: Proceedings
of the Third USENIX Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25,
1999, 1999, pp. 173–186.

[44] R. Beck, M. Avital, M. Rossi, J.B. Thatcher, Blockchain technology in
business and information systems research, Bus. Inf. Syst. Eng. 59 (6)
(2017) 381–384.

[45] Y. Hei, Y. Liu, D. Li, J. Liu, Q. Wu, Themis: An accountable blockchain-based
P2P cloud storage scheme, Peer-to-Peer Netw. Appl. (2020) 1–15.

[46] S. Raval, Decentralized Applications: Harnessing Bitcoin’s Blockchain
Technology, O’Reilly Media, Inc. 2016.

[47] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn,
G. Danezis, SoK: Consensus in the age of blockchains, in: Proceedings
of the 1st ACM Conference on Advances in Financial Technologies, AFT
2019, Zurich, Switzerland, October 21-23, 2019, 2019, pp. 183–198.

[48] I. Eyal, A.E. Gencer, E.G. Sirer, R. van Renesse, Bitcoin-NG: A scalable
blockchain protocol, in: 13th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2016, Santa Clara, CA, USA, March
16-18, 2016, 2016, pp. 45–59.

[49] Y. Sompolinsky, A. Zohar, Secure high-rate transaction processing in
bitcoin, in: Financial Cryptography and Data Security - 19th International
Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised
Selected Papers, 2015, pp. 507–527.

[50] R. Pass, E. Shi, FruitChains: A fair blockchain, in: Proceedings of the
ACM Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, 2017, pp. 315–324.

[51] Y. Sompolinsky, Y. Lewenberg, A. Zohar, SPECTRE: A fast and scalable
cryptocurrency protocol, 2016, http://eprint.iacr.org/2016/1159.

[52] V. Buterin, V. Griffith, Casper the friendly finality gadget, 2017, http:
//arxiv.org/abs/1710.09437.

[53] P. Daian, R. Pass, E. Shi, Snow white: Robustly reconfigurable consensus
and applications to provably secure proof of stake, in: Financial Cryptog-
raphy and Data Security - 23rd International Conference, FC 2019, Frigate
Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers,
2019, pp. 23–41.

[54] A. Kiayias, A. Russell, B. David, R. Oliynykov, Ouroboros: A provably secure
proof-of-stake blockchain protocol, in: Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part I, 2017, pp. 357–388.

[55] C. Decker, J. Seidel, R. Wattenhofer, Bitcoin meets strong consistency,
in: Proceedings of the 17th International Conference on Distributed
Computing and Networking, Singapore, January 4-7, 2016, 2016, pp.
13:1–13:10.

[56] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, B. Ford,
Enhancing bitcoin security and performance with strong consistency via
collective signing, in: 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016., 2016, pp. 279–296.

[57] I. Abraham, D. Malkhi, K. Nayak, L. Ren, A. Spiegelman, Solida: A
blockchain protocol based on reconfigurable Byzantine consensus, in: 21st
International Conference on Principles of Distributed Systems, OPODIS
2017, Lisbon, Portugal, December 18-20, 2017, 2017, pp. 25:1–25:19.
40
[58] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, B. Ford,
OmniLedger: A secure, scale-out, decentralized ledger via sharding, in:
2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, 2018, pp. 583–598.

[59] M. Zamani, M. Movahedi, M. Raykova, RapidChain: Scaling blockchain via
full sharding, in: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, on, Canada,
October 15-19, 2018, 2018, pp. 931–948.

[60] J. Wang, H. Wang, Monoxide: Scale out blockchains with asynchronous
consensus zones, in: 16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2019, Boston, MA, February 26-28,
2019, 2019, pp. 95–112.

[61] H. Yu, I. Nikolic, R. Hou, P. Saxena, OHIE: blockchain scaling made simple,
in: 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020, 2020, pp. 90–105.

[62] V.K. Bagaria, S. Kannan, D. Tse, G.C. Fanti, P. Viswanath, Prism: Decon-
structing the blockchain to approach physical limits, in: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, 2019, pp.
585–602.

[63] S. Popov, The tangle, 2016, http://iotatoken.com/IOTA-Whitepaper.pdf.
[64] A. Churyumov, Byteball: A decentralized system for storage and transfer

of value, 2016, https://byteball.org/Byteball.pdf.
[65] C. Li, P. Li, W. Xu, F. Long, A.C. Yao, Scaling nakamoto consensus to

thousands of transactions per second, 2018, http://arxiv.org/abs/1805.
03870.

[66] G. Danezis, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, Narwhal and
tusk: a DAG-based mempool and efficient BFT consensus, in: Y. Bromberg,
A. Kermarrec, C. Kozyrakis (Eds.), EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April 5 - 8, 2022, ACM,
2022, pp. 34–50.

[67] N. Giridharan, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, Bullshark:
DAG BFT protocols made practical, 2022, https://arxiv.org/abs/2201.
05677.

[68] P. Gazi, A. Kiayias, D. Zindros, Proof-of-stake sidechains, in: 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, IEEE, 2019, pp. 139–156.

[69] S. Dziembowski, L. Eckey, S. Faust, D. Malinowski, Perun: Virtual payment
hubs over cryptocurrencies, in: 2019 IEEE Symposium on Security and
Privacy, SP, 2017, pp. 327–344.

[70] M. Jourenko, K. Kurazumi, M. Larangeira, K. Tanaka, SoK: A taxonomy
for layer-2 scalability related protocols for cryptocurrencies, 2019, https:
//eprint.iacr.org/2019/352.

[71] A. Tomescu, S. Devadas, Catena: Efficient non-equivocation via bitcoin,
in: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, 2017, pp. 393–409.

[72] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, W.J. Knottenbelt, SoK: Communication across
distributed ledgers, 2019, https://eprint.iacr.org/2019/1128.

[73] G. Wang, Z.J. Shi, M. Nixon, S. Han, SoK: Sharding on blockchain,
in: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019, 2019,
pp. 41–61.

[74] C. Dwork, N.A. Lynch, L.J. Stockmeyer, Consensus in the presence of partial
synchrony, J. ACM 35 (2) (1988) 288–323.

[75] D. Dolev, C. Dwork, L.J. Stockmeyer, On the minimal synchronism needed
for distributed consensus, J. ACM 34 (1) (1987) 77–97.

[76] M.J. Fischer, N.A. Lynch, M. Paterson, Impossibility of distributed
consensus with one faulty process, J. ACM 32 (2) (1985) 374–382.

[77] H. Sukhwani, J.M. Martínez, X. Chang, K.S. Trivedi, A. Rindos, Performance
modeling of PBFT consensus process for permissioned blockchain network
(hyperledger fabric), in: 36th IEEE Symposium on Reliable Distributed
Systems, SRDS 2017, Hong Kong, Hong Kong, September 26-29, 2017,
2017, pp. 253–255.

[78] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, T. Rabin, Efficient multi-
party computations secure against an adaptive adversary, in: Advances in
Cryptology - EUROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, 1999, pp. 311–326.

[79] R. Pass, E. Shi, Hybrid consensus: Efficient consensus in the permissionless
model, in: 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, 2017, pp. 39:1–39:16.

[80] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling
Byzantine agreements for cryptocurrencies, in: Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017, 2017, pp. 51–68.

[81] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, X. Lin, A comprehensive
survey on smart contract construction and execution: Paradigms, tools
and systems, 2020, https://arxiv.org/abs/2008.13413.

[82] S. King, S. Nadal, PPcoin: Peer-to-peer crypto-currency with proof-of-
stake, 2012, https://cdn.bitturk.com/whitepaper/ppc.pdf.

http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb37
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb38
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb39
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb40
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb41
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb41
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb41
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb41
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb41
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb42
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb42
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb42
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb42
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb42
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb42
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb42
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb43
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb43
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb43
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb43
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb43
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb43
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb43
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb44
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb44
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb44
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb44
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb44
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb45
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb45
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb45
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb46
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb46
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb46
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb47
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb47
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb47
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb47
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb47
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb47
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb47
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb48
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb48
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb48
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb48
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb48
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb48
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb48
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb49
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb49
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb49
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb49
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb49
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb49
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb49
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb50
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb50
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb50
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb50
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb50
http://eprint.iacr.org/2016/1159
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb53
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb54
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb54
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb54
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb54
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb54
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb54
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb54
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb55
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb55
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb55
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb55
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb55
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb55
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb55
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb56
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb56
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb56
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb56
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb56
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb56
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb56
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb57
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb57
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb57
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb57
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb57
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb57
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb57
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb58
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb58
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb58
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb58
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb58
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb58
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb58
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb59
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb59
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb59
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb59
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb59
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb59
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb59
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb60
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb60
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb60
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb60
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb60
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb60
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb60
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb61
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb61
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb61
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb61
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb61
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb62
http://iotatoken.com/IOTA-Whitepaper.pdf
https://byteball.org/Byteball.pdf
http://arxiv.org/abs/1805.03870
http://arxiv.org/abs/1805.03870
http://arxiv.org/abs/1805.03870
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb66
https://arxiv.org/abs/2201.05677
https://arxiv.org/abs/2201.05677
https://arxiv.org/abs/2201.05677
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb68
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb68
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb68
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb68
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb68
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb69
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb69
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb69
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb69
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb69
https://eprint.iacr.org/2019/352
https://eprint.iacr.org/2019/352
https://eprint.iacr.org/2019/352
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb71
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb71
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb71
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb71
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb71
https://eprint.iacr.org/2019/1128
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb73
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb73
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb73
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb73
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb73
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb73
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb73
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb74
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb74
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb74
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb75
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb75
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb75
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb76
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb76
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb76
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb77
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb78
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb79
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb79
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb79
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb79
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb79
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb80
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb80
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb80
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb80
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb80
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb80
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb80
https://arxiv.org/abs/2008.13413
https://cdn.bitturk.com/whitepaper/ppc.pdf

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
[83] E. Kokoris-Kogias, Robust and scalable consensus for sharded distributed
ledgers, 2019, https://eprint.iacr.org/2019/676.

[84] R. Pass, E. Shi, Hybrid consensus: Efficient consensus in the permissionless
model, in: 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, 2017, pp. 39:1–39:16.

[85] F.B. Schneider, Implementing fault-tolerant services using the state
machine approach: A tutorial, ACM Comput. Surv. 22 (4) (1990) 299–319.

[86] F. Tschorsch, B. Scheuermann, Bitcoin and beyond: A technical survey on
decentralized digital currencies, IEEE Commun. Surv. Tutor. 18 (3) (2016)
2084–2123.

[87] M.J. Fischer, The consensus problem in unreliable distributed systems (a
brief survey), in: Fundamentals of Computation Theory, Proceedings of
the 1983 International FCT-Conference, Borgholm, Sweden, August 21-27,
1983, 1983, pp. 127–140.

[88] I. Abraham, K. Nayak, L. Ren, N. Shrestha, On the optimality of optimistic
responsiveness, 2020, https://eprint.iacr.org/2020/458.

[89] A. Momose, J.P. Cruz, Y. Kaji, Hybrid-BFT: Optimistically responsive
synchronous consensus with optimal latency or resilience, 2020, https:
//eprint.iacr.org/2020/406.

[90] M.E. Fayad, D.C. Schmidt, R.E. Johnson, Building Application Frameworks:
Object-Oriented Foundations of Framework Design, John Wiley & Sons,
Inc. 1999.

[91] J.R. Douceur, The sybil attack, in: Peer-to-Peer Systems, First International
Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised
Papers, 2002, pp. 251–260.

[92] M. Luby, Pseudorandomness and Cryptographic Applications, in:
Princeton Computer Science Notes, Princeton University Press, 1996.

[93] E. Androulaki, C. Cachin, A.D. Caro, E. Kokoris-Kogias, Channels: Horizon-
tal scaling and confidentiality on permissioned blockchains, in: Computer
Security - 23rd European Symposium on Research in Computer Security,
ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part
I, 2018, pp. 111–131.

[94] M.J. Amiri, D. Agrawal, A.E. Abbadi, SharPer: Sharding permissioned
blockchains over network clusters, 2019, http://arxiv.org/abs/1910.00765.

[95] M.J. Amiri, D. Agrawal, A.E. Abbadi, On sharding permissioned
blockchains, in: IEEE International Conference on Blockchain, Blockchain
2019, Atlanta, GA, USA, July 14-17, 2019, 2019, pp. 282–285.

[96] D.R. Lee, Y. Jang, H. Kim, Poster: A proof-of-stake (PoS) blockchain
protocol using fair and dynamic sharding management, in: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, 2019, pp.
2553–2555.

[97] M. Fitzi, P. Gazi, A. Kiayias, A. Russell, Proof-of-stake blockchain protocols
with near-optimal throughput, 2020, https://eprint.iacr.org/2020/037.

[98] T. Hanke, M. Movahedi, D. Williams, Dfinity technology overview series,
consensus system, 2018, https://arxiv.org/pdf/1805.04548.pdf.

[99] Z. Team, et al., The zilliqa technical whitepaper, 2017, https://docs.zilliqa.
com/whitepaper.pdf.

[100] V. Buterin, Ethereum sharding FAQ, 2017, https://github.com/ethereum/
wiki/wiki/Sharding-FAQ.

[101] T. Nguyen-Van, T. Nguyen-Anh, T. Le, M. Nguyen-Ho, T. Nguyen-Van,
N. Le, K. Nguyen-An, Scalable distributed random number generation
based on homomorphic encryption, in: IEEE International Conference on
Blockchain, Blockchain 2019, Atlanta, GA, USA, July 14-17, 2019, 2019,
pp. 572–579.

[102] L. Zhang, H. Kan, Z. Chen, Z. Mao, J. Gao, ABERand: Effective distributed
randomness on ciphertext-policy attribute-based encryption, 2019, https:
//eprint.iacr.org/2019/1307.

[103] H. Dang, T.T.A. Dinh, D. Loghin, E. Chang, Q. Lin, B.C. Ooi, Towards
scaling blockchain systems via sharding, in: Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, the Netherlands, June 30 - July 5, 2019, 2019, pp.
123–140.

[104] A. Hafid, A.S. Hafid, M. Samih, New mathematical model to analyze
security of sharding-based blockchain protocols, IEEE Access 7 (2019)
185447–185457.

[105] R.A. Bazzi, Synchronous Byzantine quorum systems, Distrib. Comput. 13
(1) (2000) 45–52.

[106] I. Abraham, D. Malkhi, K. Nayak, L. Ren, M. Yin, Sync HotStuff: Simple
and practical synchronous state machine replication, in: 2020 IEEE Sym-
posium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020, 2020, pp. 106–118.

[107] A. Miller, Y. Xia, K. Croman, E. Shi, D. Song, The honey badger of
BFT protocols, in: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28,
2016, 2016, pp. 31–42.

[108] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2)
(1998) 133–169.
41
[109] M. Yin, D. Malkhi, M.K. Reiter, G. Golan-Gueta, I. Abraham, HotStuff: BFT
consensus with linearity and responsiveness, in: Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, on, Canada, July 29 - August 2, 2019, 2019, pp. 347–356.

[110] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, G. Danezis, Chainspace:
A sharded smart contracts platform, in: 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 2018, pp. 18–21.

[111] T.H. Chan, R. Pass, E. Shi, PaLa: A simple partially synchronous blockchain,
2018, https://eprint.iacr.org/2018/981.pdf.

[112] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, X. Guan,
RepChain: A reputation based secure, fast and high incentive blockchain
system via sharding, IEEE Internet Things J. (2020) 1.

[113] M. Zhang, J. Li, Z. Chen, H. Chen, X. Deng, CycLedger: A scalable and
secure parallel protocol for distributed ledger via sharding, in: 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), New
Orleans, la, USA, May 18-22, 2020, 2020, pp. 358–367.

[114] M. Wang, Q. Wu, Lever: Breaking the shackles of scalable on-chain
validation, 2019, https://eprint.iacr.org/2019/1172.

[115] G. Danezis, S. Meiklejohn, Centrally banked cryptocurrencies, in: 23rd
Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016, 2016, pp. 1–15.

[116] G. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, Divide and scale: For-
malization of distributed ledger sharding protocols, 2019, http://arxiv.org/
abs/1910.10434.

[117] T. Rajab, M.H. Manshaei, M. Dakhilalian, M. Jadliwala, M.A. Rahman, On
the feasibility of sybil attacks in shard-based permissionless blockchains,
2020, https://arxiv.org/abs/2002.06531.

[118] Y. Liu, J. Liu, Z. Zhang, H. Yu, A fair selection protocol for committee-based
permissionless blockchains, Comput. Secur. (2020) 101718.

[119] R. Pass, E. Shi, Thunderella: Block with optimistic instant confirmation, in:
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, 2018, pp.
3–33.

[120] B. David, P. Gazi, A. Kiayias, A. Russell, Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain, in: Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part II, 2018, pp. 66–98.

[121] I. Eyal, E.G. Sirer, Majority is not enough: bitcoin mining is vulnerable,
Commun. ACM 61 (7) (2018) 95–102.

[122] I. Eyal, The miner’s dilemma, in: 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, 2015, pp. 89–103.

[123] K. Nayak, S. Kumar, A. Miller, E. Shi, Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack, in: EuroS&P 2016, 2016,
pp. 305–320.

[124] Y. Liu, Y. Hei, T. Xu, J. Liu, An evaluation of uncle block mechanism
effect on ethereum selfish and stubborn mining combined with an eclipse
attack, IEEE Access 8 (2020) 17489–17499.

[125] S. Bag, S. Ruj, K. Sakurai, Bitcoin block withholding attack: Analysis and
mitigation, IEEE Trans. Inform. Forensics Secur. 12 (8) (2017) 1967–1978.

[126] Y. Kwon, D. Kim, Y. Son, E.Y. Vasserman, Y. Kim, Be selfish and
avoid dilemmas: Fork after withholding (FAW) attacks on bitcoin, in:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, 2017, pp. 195–209.

[127] E. Heilman, A. Kendler, A. Zohar, S. Goldberg, Eclipse attacks on bitcoin’s
peer-to-peer network, in: 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14, 2015, 2015, pp.
129–144.

[128] Y. Marcus, E. Heilman, S. Goldberg, Low-resource eclipse attacks on
ethereum’s peer-to-peer network, 2018, http://eprint.iacr.org/2018/236.

[129] M. Apostolaki, A. Zohar, L. Vanbever, Hijacking bitcoin: Routing attacks
on cryptocurrencies, in: 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, 2017, pp. 375–392.

[130] W. Meng, E.W. Tischhauser, Q. Wang, Y. Wang, J. Han, When intrusion
detection meets blockchain technology: a review, Ieee Access 6 (2018)
10179–10188.

[131] D.P. Dubhashi, A. Panconesi, Concentration of Measure for the Analysis of
Randomized Algorithms, Cambridge University Press, 2009, http://www.
cambridge.org/gb/knowledge/isbn/item2327542/.

[132] N. Houy, It will cost you nothing to ‘kill’ a proof-of-stake crypto-currency,
2014, ftp://ftp.gate.cnrs.fr/RePEc/2014/1404.pdf.

[133] A. Chepurnoy, Interactive proof-of-stake, 2016, http://arxiv.org/abs/1601.
00275.

[134] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M.J.
Fischer, B. Ford, Scalable bias-resistant distributed randomness, in: 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017, 2017, pp. 444–460.

https://eprint.iacr.org/2019/676
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb84
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb84
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb84
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb84
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb84
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb85
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb85
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb85
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb86
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb86
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb86
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb86
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb86
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb87
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb87
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb87
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb87
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb87
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb87
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb87
https://eprint.iacr.org/2020/458
https://eprint.iacr.org/2020/406
https://eprint.iacr.org/2020/406
https://eprint.iacr.org/2020/406
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb90
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb90
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb90
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb90
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb90
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb91
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb91
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb91
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb91
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb91
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb92
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb92
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb92
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb93
http://arxiv.org/abs/1910.00765
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb95
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb95
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb95
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb95
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb95
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb96
https://eprint.iacr.org/2020/037
https://arxiv.org/pdf/1805.04548.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb101
https://eprint.iacr.org/2019/1307
https://eprint.iacr.org/2019/1307
https://eprint.iacr.org/2019/1307
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb103
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb104
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb104
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb104
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb104
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb104
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb105
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb105
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb105
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb106
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb106
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb106
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb106
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb106
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb106
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb106
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb107
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb107
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb107
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb107
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb107
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb107
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb107
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb108
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb108
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb108
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb109
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb109
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb109
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb109
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb109
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb109
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb109
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb110
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb110
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb110
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb110
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb110
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb110
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb110
https://eprint.iacr.org/2018/981.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb112
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb112
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb112
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb112
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb112
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb113
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb113
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb113
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb113
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb113
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb113
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb113
https://eprint.iacr.org/2019/1172
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb115
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb115
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb115
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb115
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb115
http://arxiv.org/abs/1910.10434
http://arxiv.org/abs/1910.10434
http://arxiv.org/abs/1910.10434
https://arxiv.org/abs/2002.06531
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb118
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb118
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb118
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb119
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb120
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb121
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb121
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb121
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb122
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb122
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb122
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb123
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb123
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb123
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb123
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb123
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb124
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb124
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb124
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb124
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb124
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb125
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb125
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb125
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb126
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb127
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb127
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb127
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb127
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb127
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb127
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb127
http://eprint.iacr.org/2018/236
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb129
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb129
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb129
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb129
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb129
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb130
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb130
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb130
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb130
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb130
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
ftp://ftp.gate.cnrs.fr/RePEc/2014/1404.pdf
http://arxiv.org/abs/1601.00275
http://arxiv.org/abs/1601.00275
http://arxiv.org/abs/1601.00275
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb134
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb134
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb134
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb134
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb134
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb134
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb134

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
[135] J. Kwon, Tendermint: Consensus without mining, 2014, https://
tendermint.com/static/docs/tendermint.pdf.

[136] P. Gazi, A. Kiayias, A. Russell, Stake-bleeding attacks on proof-of-stake
blockchains, in: Crypto Valley Conference on Blockchain Technology,
CVCBT 2018, Zug, Switzerland, June 20-22, 2018, 2018, pp. 85–92.

[137] G. Karame, E. Androulaki, S. Capkun, Double-spending fast payments
in bitcoin, in: The ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, 2012, pp.
906–917.

[138] G.O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, S. Capkun, Misbe-
havior in bitcoin: A study of double-spending and accountability, ACM
Trans. Inf. Syst. Secur. 18 (1) (2015) 2:1–2:32.

[139] M. Blum, Coin flipping by telephone - A protocol for solving impossi-
ble problems, in: COMPCON’82, Digest of Papers, Twenty-Fourth IEEE
Computer Society International Conference, San Francisco, California, USA,
February 22-25, 1982, 1982, pp. 133–137.

[140] M.O. Rabin, Transaction protection by beacons, J. Comput. System Sci. 27
(2) (1983) 256–267.

[141] P. Schindler, A. Judmayer, N. Stifter, E. Weippl, HydRand: Efficient contin-
uous distributed randomness, in: 2020 IEEE Symposium on Security and
Privacy, SP, 2020, pp. 32–48.

[142] I. Cascudo, B. David, SCRAPE: scalable randomness attested by public enti-
ties, in: Applied Cryptography and Network Security - 15th International
Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings,
2017, pp. 537–556.

[143] S. Micali, M.O. Rabin, S.P. Vadhan, Verifiable random functions, in: 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA, 1999, pp. 120–130.

[144] A. Boldyreva, Threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme, in: Public Key
Cryptography - PKC 2003, 6th International Workshop on Theory and
Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003,
Proceedings, 2003, pp. 31–46.

[145] M. Stadler, Publicly verifiable secret sharing, in: Advances in Cryptology
- EUROCRYPT ’96, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996,
Proceeding, 1996, pp. 190–199.

[146] B. Schoenmakers, A simple publicly verifiable secret sharing scheme
and its application to electronic, in: Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, 1999, pp. 148–164.

[147] D. Boneh, J. Bonneau, B. Bünz, B. Fisch, Verifiable delay functions, in:
Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part I, 2018, pp. 757–788.

[148] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions,
J. ACM 33 (4) (1986) 792–807.

[149] D. Galindo, J. Liu, M. Ordean, J. Wong, Fully distributed verifiable random
functions and their application to decentralised random beacons, 2020,
https://eprint.iacr.org/2020/096.

[150] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, Secure distributed key
generation for discrete-log based cryptosystems, J. Cryptol. 20 (1) (2007)
51–83.

[151] C. Cachin, K. Kursawe, V. Shoup, Random oracles in constantinople: Prac-
tical asynchronous Byzantine agreement using cryptography, J. Cryptol.
18 (3) (2005) 219–246.

[152] A. Shamir, How to share a secret, Commun. ACM 22 (11) (1979) 612–613.
[153] P. Feldman, A practical scheme for non-interactive verifiable secret

sharing, in: 28th Annual Symposium on Foundations of Computer Science,
Los Angeles, California, USA, 27-29 October 1987, 1987, pp. 427–437.

[154] M. Blum, A.D. Santis, S. Micali, G. Persiano, Noninteractive zero-
knowledge, SIAM J. Comput. 20 (6) (1991) 1084–1118.

[155] I. Cascudo, B. David, ALBATROSS: publicly attestable batched randomness
based on secret sharing, in: Advances in Cryptology - ASIACRYPT 2020,
268th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Virtual, December 7-11, 2020, Proceedings,
2020, pp. 311–341.

[156] E. Syta, I. Tamas, D. Visher, D.I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, B. Ford, Keeping authorities "honest or bust" with decentralized
witness cosigning, in: IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016, 2016, pp. 526–545.

[157] R. Canetti, Universally composable security: A new paradigm for cryp-
tographic protocols, in: 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA, 2001, pp. 136–145.

[158] B. Bünz, S. Goldfeder, J. Bonneau, Proofs-of-delay and randomness bea-
cons in ethereum, in: IEEE Security and Privacy on the Blockchain, IEEE
S&B, 2017.

[159] S. Azouvi, P. McCorry, S. Meiklejohn, Winning the caucus race: Continuous
leader election via public randomness, 2018, http://arxiv.org/abs/1801.
07965.
42
[160] A.K. Lenstra, B. Wesolowski, A random zoo: sloth, unicorn, and trx, 2015,
http://eprint.iacr.org/2015/366.

[161] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, E.R. Weippl, RandRun-
ner: Distributed randomness from trapdoor VDFs with strong uniqueness,
2020, https://eprint.iacr.org/2020/942.pdf.

[162] randao.org, Randao: Verifiable random number generation, 2017, https:
//randao.org/whitepaper/Randao_v0.85_en.pdf.

[163] B. Cohen, K. Pietrzak, The chia network blockchain, 2019, https://www.
chia.net/assets/ChiaGreenPaper.pdf.

[164] R. Cramer, I. Damgård, J.B. Nielsen, Multiparty computation from thresh-
old homomorphic encryption, in: Advances in Cryptology - EUROCRYPT
2001, International Conference on the Theory and Application of Crypto-
graphic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, 2001,
pp. 280–299.

[165] Y. Rouselakis, B. Waters, Efficient statically-secure large-universe multi-
authority attribute-based encryption, in: Financial Cryptography and Data
Security - 19th International Conference, FC 2015, San Juan, Puerto Rico,
January 26-30, 2015, Revised Selected Papers, 2015, pp. 315–332.

[166] A. Cherniaeva, I. Shirobokov, O. Shlomovits, Homomorphic encryption
random beacon, 2019, https://eprint.iacr.org/2019/1320.

[167] W. Hoeffding, Probability inequalities for sums of bounded random
variables, in: The Collected Works of Wassily Hoeffding, Springer, 1994,
pp. 409–426.

[168] S. Li, M. Yu, C. Yang, A.S. Avestimehr, S. Kannan, P. Viswanath,
PolyShard: Coded sharding achieves linearly scaling efficiency and
security simultaneously, IEEE Trans. Inf. Forensics Secur. 16 (2021)
249–261.

[169] Q. Yu, S. Li, N. Raviv, S.M.M. Kalan, M. Soltanolkotabi, A.S. Avestimehr,
Lagrange coded computing: Optimal design for resiliency, security, and
privacy, in: The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan,
2019, pp. 1215–1225.

[170] Z. Hong, S. Guo, P. Li, W. Chen, Pyramid: A layered sharding blockchain
system, in: 40th IEEE Conference on Computer Communications, INFO-
COM 2021, Vancouver, BC, Canada, May 10-13, 2021, IEEE, 2021, pp.
1–10.

[171] S. Liu, P. Viotti, C. Cachin, V. Quéma, M. Vukolic, XFT: practical fault
tolerance beyond crashes, in: 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016., 2016, pp. 485–500.

[172] I. Abraham, S. Devadas, K. Nayak, L. Ren, Brief announcement: Practical
synchronous Byzantine consensus, in: 31st International Symposium on
Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
2017, pp. 41:1–41:4.

[173] A. Kiayias, A. Russell, Ouroboros-BFT: A simple Byzantine fault tolerant
consensus protocol, 2018, https://eprint.iacr.org/2018/1049.pdf.

[174] D. Malkhi, K. Nayak, L. Ren, Flexible Byzantine fault tolerance, in:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019,
2019, pp. 1041–1053.

[175] T.H. Chan, R. Pass, E. Shi, PiLi: An extremely simple synchronous
blockchain, 2018, https://eprint.iacr.org/2018/980.

[176] C. Burchert, R. Wattenhofer, piChain: When a blockchain meets paxos,
in: 21st International Conference on Principles of Distributed Sys-
tems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, 2017, pp.
2:1–2:13.

[177] A. Charapko, A. Ailijiang, M. Demirbas, Bridging paxos and blockchain
consensus, in: IEEE International Conference on Internet of Things
(IThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), IThings/GreenCom/CPSCom/SmartData 2018, Halifax,
NS, Canada, July 30 - August 3, 2018, 2018, pp. 1545–1552.

[178] D.J. Bernstein, The poly1305-AES message-authentication code, in: Fast
Software Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21-23, 2005, Revised Selected Papers, 2005, pp. 32–49.

[179] M. Yin, D. Malkhi, M.K. Reiter, G.G. Gueta, I. Abraham, HotStuff: BFT
consensus with linearity and responsiveness, in: Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, on, Canada, July 29 - August 2, 2019, ACM, 2019, pp. 347–356.

[180] G.G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter, D.-A.
Seredinschi, O. Tamir, A. Tomescu, SBFT: a scalable and decentralized trust
infrastructure, in: 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN, IEEE, 2019, pp. 568–580.

[181] C. Schnorr, Efficient signature generation by smart cards, J. Cryptol. 4 (3)
(1991) 161–174.

[182] J. Sousa, A.N. Bessani, From Byzantine consensus to BFT state machine
replication: A latency-optimal transformation, in: 2012 Ninth European
Dependable Computing Conference, Sibiu, Romania, May 8-11, 2012,
2012, pp. 37–48.

https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb136
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb136
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb136
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb136
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb136
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb137
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb137
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb137
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb137
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb137
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb137
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb137
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb138
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb138
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb138
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb138
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb138
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb139
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb139
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb139
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb139
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb139
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb139
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb139
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb140
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb140
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb140
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb141
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb141
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb141
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb141
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb141
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb142
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb142
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb142
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb142
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb142
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb142
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb142
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb143
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb143
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb143
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb143
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb143
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb144
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb145
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb145
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb145
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb145
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb145
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb145
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb145
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb146
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb146
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb146
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb146
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb146
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb146
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb146
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb147
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb147
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb147
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb147
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb147
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb147
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb147
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb148
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb148
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb148
https://eprint.iacr.org/2020/096
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb150
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb150
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb150
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb150
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb150
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb151
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb151
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb151
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb151
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb151
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb152
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb153
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb153
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb153
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb153
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb153
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb154
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb154
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb154
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb155
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb156
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb156
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb156
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb156
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb156
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb156
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb156
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb157
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb157
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb157
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb157
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb157
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb157
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb157
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb158
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb158
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb158
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb158
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb158
http://arxiv.org/abs/1801.07965
http://arxiv.org/abs/1801.07965
http://arxiv.org/abs/1801.07965
http://eprint.iacr.org/2015/366
https://eprint.iacr.org/2020/942.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb164
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb165
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb165
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb165
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb165
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb165
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb165
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb165
https://eprint.iacr.org/2019/1320
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb167
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb167
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb167
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb167
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb167
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb168
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb168
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb168
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb168
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb168
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb168
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb168
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb169
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb170
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb170
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb170
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb170
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb170
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb170
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb170
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb171
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb171
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb171
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb171
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb171
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb171
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb171
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb172
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb172
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb172
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb172
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb172
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb172
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb172
https://eprint.iacr.org/2018/1049.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb174
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb174
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb174
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb174
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb174
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb174
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb174
https://eprint.iacr.org/2018/980
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb176
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb176
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb176
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb176
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb176
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb176
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb176
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb177
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb178
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb178
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb178
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb178
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb178
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb179
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb179
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb179
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb179
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb179
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb179
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb179
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb180
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb180
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb180
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb180
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb180
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb180
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb180
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb181
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb181
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb181
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb182
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb182
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb182
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb182
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb182
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb182
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb182

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
[183] M.J. Amiri, D. Agrawal, A.E. Abbadi, SharPer: Sharding permissioned
blockchains over network clusters, in: G. Li, Z. Li, S. Idreos, D. Srivastava
(Eds.), SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, ACM, 2021, pp. 76–88.

[184] M.J. Fischer, N.A. Lynch, M. Paterson, Impossibility of distributed
consensus with one faulty process, J. ACM 32 (2) (1985) 374–382.

[185] C. Cachin, K. Kursawe, F. Petzold, V. Shoup, Secure and efficient asyn-
chronous broadcast protocols, in: Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, 2001, pp. 524–541.

[186] M.O. Rabin, Randomized Byzantine generals, in: 24th Annual Symposium
on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November
1983, 1983, pp. 403–409.

[187] M. Ben-Or, Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract), in: Proceedings of the Second
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Montreal, Quebec, Canada, August 17-19, 1983, 1983, pp.
27–30.

[188] G.S. Veronese, M. Correia, A.N. Bessani, L.C. Lung, P. Veríssimo, Efficient
Byzantine fault-tolerance, IEEE Trans. Comput. 62 (1) (2013) 16–30.

[189] I. Abraham, D. Malkhi, A. Spiegelman, Asymptotically optimal validated
asynchronous Byzantine agreement, in: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
on, Canada, July 29 - August 2, 2019, 2019, pp. 337–346.

[190] S. Duan, M.K. Reiter, H. Zhang, BEAT: asynchronous BFT made practical,
in: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, on, Canada, October 15-19,
2018, 2018, pp. 2028–2041.

[191] Y. Lu, Z. Lu, Q. Tang, G. Wang, Dumbo-MVBA: Optimal multi-valued
validated asynchronous Byzantine agreement, revisited, in: PODC ’20:
ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, 2020, pp. 129–138.

[192] B. Guo, Z. Lu, Q. Tang, J. Xu, Z. Zhang, Dumbo: Faster asynchronous
BFT protocols, in: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2020, Virtual, November
9-13, 2020, 2020, pp. 803–818.

[193] T. Crain, C. Natoli, V. Gramoli, Red belly: A secure, fair and scalable open
blockchain, in: 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021, IEEE, 2021, pp. 466–483.

[194] Y. Liu, J. Liu, J. Yin, G. Li, H. Yu, Q. Wu, Cross-shard transaction processing
in sharding blockchains, in: Algorithms and Architectures for Parallel
Processing - 20th International Conference, ICA3PP 2020, New York City,
NY, USA, October 2-4, 2020, Proceedings, Part III, 2020, pp. 324–339.

[195] Y. Liu, J. Liu, D. Li, H. Yu, Q. Wu, FleetChain: A secure scalable and
responsive blockchain achieving optimal sharding, in: Algorithms and
Architectures for Parallel Processing - 20th International Conference,
ICA3PP 2020, New York City, NY, USA, October 2-4, 2020, Proceedings,
Part III, 2020, pp. 409–425.

[196] M.S. Özdayi, Y. Guo, M. Zamani, Instachain: Breaking the sharding limits
via adjustable quorums, 2022, https://eprint.iacr.org/2022/413.

[197] D. Currin, J. Denman, L.G.M. Eykholt, Mobile process calculi
for programming the blockchain documentation, 2017, https:
//buildmedia.readthedocs.org/media/pdf/mytestdocforrchain/latest/
mytestdocforrchain.pdf.

[198] V. Buterin, Cross-shard contract yanking, 2018, https://ethresear.ch/t/
cross-shard-contract-yanking/1450.

[199] A. Manuskin, M. Mirkin, I. Eyal, Ostraka: Secure blockchain scaling by
node sharding, in: IEEE European Symposium on Security and Privacy
Workshops, EuroS&P Workshops 2020, Genoa, Italy, September 7-11,
2020, 2020, pp. 397–406.

[200] P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, H. Zhang, Meepo: Sharded
consortium blockchain, in: 37th IEEE International Conference on Data
Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, IEEE, 2021,
pp. 1847–1852.

[201] S. Thomas, E. Schwartz, A protocol for interledger payments, 2015, https:
//interledger.org/interledger.pdf.

[202] M. Herlihy, Atomic cross-chain swaps, in: Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, ACM, 2018, pp.
245–254.

[203] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, A. Juels, Tesseract: Real-
time cryptocurrency exchange using trusted hardware, in: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2019, pp. 1521–1538.

[204] Y. Hei, D. Li, C. Zhang, J. Liu, Y. Liu, Q. Wu, Practical AgentChain: A
compatible cross-chain exchange system, Future Gener. Comput. Syst. 130
(2022) 207–218.

[205] A. Sonnino, S. Bano, M. Al-Bassam, G. Danezis, Replay attacks and
defenses against cross-shard consensus in sharded distributed ledgers, in:
IEEE European Symposium on Security and Privacy Workshops, EuroS&P
Workshops 2020, Genoa, Italy, September 7-11, 2020, 2020, pp. 397–406.
43
[206] L.N. Nguyen, T.D.T. Nguyen, T.N. Dinh, M.T. Thai, OptChain: Optimal
transactions placement for scalable blockchain sharding, in: 39th IEEE
International Conference on Distributed Computing Systems, ICDCS 2019,
Dallas, TX, USA, July 7-10, 2019, 2019, pp. 525–535.

[207] H. Dang, A. Dinh, E. Chang, B.C. Ooi, Chain of trust: Can trusted hardware
help scaling blockchains? 2018, http://arxiv.org/abs/1804.00399.

[208] D. Leung, A. Suhl, Y. Gilad, N. Zeldovich, Vault: Fast bootstrapping for
the algorand cryptocurrency, in: 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019, 2019, pp. 1–15.

[209] M. Andrychowicz, S. Dziembowski, PoW-based distributed cryptography
with no trusted setup, in: Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, 2015, pp. 379–399.

[210] J.A. Garay, A. Kiayias, N. Leonardos, G. Panagiotakos, Bootstrapping the
blockchain, with applications to consensus and fast PKI setup, in: Public-
Key Cryptography - PKC 2018 - 21st IACR International Conference on
Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil,
March 25-29, 2018, Proceedings, Part II, 2018, pp. 465–495.

[211] M.H. Manshaei, M. Jadliwala, A. Maiti, M. Fooladgar, A game-theoretic
analysis of shard-based permissionless blockchains, IEEE Access 6 (2018)
78100–78112.

[212] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust algo-
rithm for reputation management in P2P networks, in: Proceedings of
the Twelfth International World Wide Web Conference, WWW 2003,
Budapest, Hungary, May 20-24, 2003, 2003, pp. 640–651.

[213] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, C. Kamhoua, Incentivizing
blockchain miners to avoid dishonest mining strategies by a reputation-
based paradigm, in: Science and Information Conference, 2018, pp.
1118–1134.

[214] A. Bugday, A. Ozsoy, H. Sever, Securing blockchain shards by using
learning based reputation and verifiable random functions, in: 2019
International Symposium on Networks, Computers and Communications,
ISNCC 2019, Istanbul, Turkey, June 18-20, 2019, 2019, pp. 1–4.

[215] E. Maskin, Nash equilibrium and welfare optimality, Rev. Econom. Stud.
66 (1) (1999) 23–38.

[216] G. Yu, X. Wang, K. Yu, W. Ni, J.A. Zhang, R.P. Liu, Survey: Sharding in
blockchains, IEEE Access 8 (2020) 14155–14181.

[217] R. Han, J. Yu, R. Zhang, Analysing and improving shard allocation
protocols for sharded blockchains, 2020, https://eprint.iacr.org/2020/943.

[218] S. Bano, M. Al-Bassam, G. Danezis, The road to scalable blockchain
designs, Login Usenix Mag. 42 (4) (2017).

[219] J.A. Garay, A. Kiayias, SoK: A consensus taxonomy in the blockchain era,
in: Topics in Cryptology - CT-RSA 2020 - the Cryptographers’ Track At
the RSA Conference 2020, San Francisco, CA, USA, February 24-28, 2020,
Proceedings, 2020, pp. 284–318.

[220] S.J. Alsunaidi, F.A. Alhaidari, A survey of consensus algorithms for
blockchain technology, in: 2019 International Conference on Computer
and Information Sciences, ICCIS, IEEE, 2019, pp. 1–6.

[221] G. Nguyen, K. Kim, A survey about consensus algorithms used in
blockchain, J. Inf. Process. Syst. 14 (1) (2018) 101–128.

[222] Y. Xiao, N. Zhang, W. Lou, Y.T. Hou, A survey of distributed consensus
protocols for blockchain networks, IEEE Commun. Surv. Tutor. 22 (2)
(2020) 1432–1465.

[223] J. Xie, F.R. Yu, T. Huang, R. Xie, J. Liu, Y. Liu, A survey on the scalability
of blockchain systems, IEEE Netw. 33 (5) (2019) 166–173.

[224] S. Kim, Y. Kwon, S. Cho, A survey of scalability solutions on blockchain, in:
International Conference on Information and Communication Technology
Convergence, ICTC 2018, Jeju Island, Korea (South), October 17-19, 2018,
2018, pp. 1204–1207.

[225] Q. Zhou, H. Huang, Z. Zheng, J. Bian, Solutions to scalability of blockchain:
A survey, IEEE Access 8 (2020) 16440–16455.

Yizhong Liu received the B.S. degree in electrical en-
gineering from Beihang University, Beijing, China, in
2014. He received the Ph.D. degree from Beihang Uni-
versity, Beijing, China, in 2021. He is now an Assistant
Professor in School of Cyber Science and Technology,
Beihang University, China. His research interests in-
clude information security, cryptography, blockchain
and smart contracts.

http://refhub.elsevier.com/S1574-0137(22)00047-8/sb183
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb183
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb183
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb183
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb183
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb183
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb183
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb184
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb184
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb184
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb185
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb185
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb185
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb185
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb185
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb185
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb185
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb186
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb186
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb186
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb186
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb186
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb187
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb188
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb188
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb188
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb189
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb189
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb189
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb189
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb189
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb189
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb189
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb190
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb190
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb190
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb190
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb190
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb190
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb190
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb191
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb191
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb191
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb191
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb191
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb191
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb191
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb192
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb192
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb192
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb192
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb192
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb192
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb192
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb193
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb193
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb193
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb193
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb193
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb194
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb194
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb194
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb194
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb194
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb194
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb194
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb195
https://eprint.iacr.org/2022/413
https://buildmedia.readthedocs.org/media/pdf/mytestdocforrchain/latest/mytestdocforrchain.pdf
https://buildmedia.readthedocs.org/media/pdf/mytestdocforrchain/latest/mytestdocforrchain.pdf
https://buildmedia.readthedocs.org/media/pdf/mytestdocforrchain/latest/mytestdocforrchain.pdf
https://buildmedia.readthedocs.org/media/pdf/mytestdocforrchain/latest/mytestdocforrchain.pdf
https://buildmedia.readthedocs.org/media/pdf/mytestdocforrchain/latest/mytestdocforrchain.pdf
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/cross-shard-contract-yanking/1450
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb199
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb199
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb199
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb199
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb199
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb199
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb199
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb200
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb200
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb200
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb200
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb200
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb200
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb200
https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb202
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb202
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb202
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb202
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb202
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb203
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb203
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb203
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb203
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb203
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb203
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb203
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb204
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb204
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb204
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb204
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb204
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb205
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb205
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb205
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb205
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb205
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb205
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb205
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb206
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb206
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb206
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb206
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb206
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb206
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb206
http://arxiv.org/abs/1804.00399
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb208
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb208
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb208
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb208
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb208
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb208
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb208
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb209
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb209
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb209
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb209
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb209
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb209
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb209
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb210
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb211
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb211
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb211
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb211
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb211
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb212
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb212
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb212
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb212
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb212
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb212
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb212
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb213
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb213
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb213
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb213
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb213
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb213
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb213
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb214
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb214
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb214
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb214
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb214
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb214
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb214
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb215
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb215
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb215
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb216
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb216
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb216
https://eprint.iacr.org/2020/943
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb218
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb218
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb218
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb219
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb219
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb219
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb219
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb219
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb219
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb219
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb220
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb220
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb220
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb220
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb220
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb221
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb221
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb221
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb222
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb222
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb222
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb222
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb222
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb223
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb223
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb223
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb224
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb224
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb224
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb224
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb224
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb224
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb224
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb225
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb225
http://refhub.elsevier.com/S1574-0137(22)00047-8/sb225

Y. Liu, J. Liu, M.A. Vaz Salles et al. Computer Science Review 46 (2022) 100513
Jianwei Liu received the B.S. and M.S. degrees in
Electronic and Information from Shandong University,
China in 1985 and 1988, respectively. He received his
Ph.D. degree in Communication and Electronic System
from Xidian University, China in 1998. He is now
a Professor in School of Cyber Science and Technol-
ogy, Beihang University, China. His current research
interests include wireless communication network,
cryptography and information security.

Marcos Antonio Vaz Salles received the M.S. degree in
informatics from Pontifical Catholic University of Rio de
Janeiro, Rio de Janeiro, Brazil, in 2004, and the Ph.D.
degree in computer science from ETH Zurich, Zurich,
Switzerland, in 1989. He was an Associate Professor in
Department of Computer Science, University of Copen-
hagen (DIKU), Copenhagen, Denmark. He has authored
over 50 publications and served on the program com-
mittees of several international conferences such as
SIGMOD, VLDB, EDBT. His research interests include
software engineering and data management.

Zongyang Zhang received the M.S. and Ph.D. de-
grees from Shanghai Jiao Tong University in 2008 and
2012, respectively. He is now an Associate Professor
in School of Cyber Science and Technology, Beihang
University, China. His current research interests include
cryptography, blockchain and cryptocurrency.

Tong Li received the B.S. degree from North China
Electric Power University, Beijing, China, in 2019. She
receives her M.S. degree in Cyber Security, Beihang Uni-
versity, China in 2021. She now work at AntChain of Al-
ibaba Group. Her research interests include blockchain,
smart contracts, and secure randomness.
44
Bin Hu received the B.S. degree in electrical engineer-
ing from Beihang University, Beijing, China, in 2019.
He is now pursuing a Ph.D. degree in Cyber Secu-
rity, Beihang University, China. His research interests
include blockchain, smart contracts, and multi-party
computation.

Fritz Henglein received the M.S. degree in computer
science from Rutgers University, New Jersey, USA,
in 1986, and the Ph.D. degree in computer science
from Rutgers University, New Jersey, USA, in 1989.
He is an Professor in Department of Computer Sci-
ence, University of Copenhagen (DIKU), Copenhagen,
Denmark. He has authored over 100 publications and
served on the program committees of several inter-
national conferences on programming languages. His
research interests include algorithmic, semantic and
logical aspects of programming languages.

Rongxing Lu is Mastercard IoT Research Chair, a
University Research Scholar, an associate professor at
the Faculty of Computer Science (FCS), University of
New Brunswick (UNB), Canada. Before that, he worked
as an assistant professor at the School of Electrical
and Electronic Engineering, Nanyang Technological Uni-
versity (NTU), Singapore from April 2013 to August
2016. Rongxing Lu worked as a Postdoctoral Fellow
at the University of Waterloo from May 2012 to April
2013. He was awarded the most prestigious ‘‘Governor
General’s Gold Medal’’, when he received his Ph.D.

degree from the Department of Electrical & Computer Engineering, University
of Waterloo, Canada, in 2012; and won the 8th IEEE Communications Society
(ComSoc) Asia Pacific (AP) Outstanding Young Researcher Award, in 2013.
Dr. Lu is an IEEE Fellow. His research interests include applied cryptography,
privacy enhancing technologies, and IoT-Big Data security and privacy. He has
published extensively in his areas of expertise, and was the recipient of 9
best (student) paper awards from some reputable journals and conferences.
Currently, Dr. Lu serves as the Chair of IEEE ComSoc CIS-TC (Communications and
Information Security Technical Committee), and the founding Co-chair of IEEE
TEMS Blockchain and Distributed Ledgers Technologies Technical Committee
(BDLT-TC). Dr. Lu is the Winner of 2016–17 Excellence in Teaching Award, FCS,
UNB.

	Building blocks of sharding blockchain systems: Concepts, approaches, and open problems
	Introduction
	Our Contributions
	Paper Organization

	Preliminaries
	Background
	Blockchain Consensus
	Sharding Blockchains

	Notations
	Definitions
	Network Model
	Adversary Model
	Transaction Model
	Intra-Shard Consensus
	Sharding Blockchains

	Decomposing Sharding Blockchains into Functional Components
	Decomposition of Sharding Blockchains
	Node Selection
	Epoch Randomness
	Node Assignment
	Intra-Shard Consensus
	Cross-Shard Transaction Processing
	Shard Reconfiguration
	Motivation Mechanism

	Composing Separate Components into Sharding Blockchain Systems
	General Methods to Compose a Sharding Blockchain System
	Distinct Combinations of System Models and Components
	Instantiation of Composing Components into a Sharding Blockchain System

	Summary

	Node Selection
	Basic Concepts
	Existing Approaches
	PoW-Based Node Selection
	PoS-Based Node Selection
	CA-Based Node Selection

	Problems and Future Directions
	PoW-Based Node Selection
	PoS-Based Node Selection

	Epoch Randomness
	Basic Concepts
	Existing Approaches
	VRF
	Threshold Signature
	PVSS
	Hash Functions
	VDF
	Others

	Comparison of Distributed Random Beacon Protocols
	Network Model
	Randomness Properties
	Complexity Evaluation

	Problems and Future Directions
	Security Requirements
	Performance Improvements
	Formal Security Analysis

	Node Assignment
	Basic Concepts
	Existing Approaches
	Binomial Distribution
	Hypergeometric Distribution
	Other Distribution

	Problems and Future Directions
	The analysis from A to B is ignored
	The infinite pool assumption is not accurate
	The failure rate with cumulative hypergeometric distribution is imprecise

	Intra-Shard Consensus
	Basic Concepts
	Existing Approaches
	Strong Consistency
	Weak Consistency

	Problems and Future Directions
	Instant Sharding Blockchains
	Eventual Sharding Blockchains

	Cross-Shard Transaction Processing
	Basic Concepts
	Existing Approaches
	Two-Phase Commit Based Approaches
	Transaction Split Based Approaches
	Relay Transaction Based Approaches

	Problems and Future Directions
	Two-Phase Commit Based Approaches
	Transaction Split Based Approaches
	Relay Transaction Based Approaches

	Shard Reconfiguration
	Basic Concepts
	Existing Approaches
	Reconfiguration through Random Replacement
	Reconfiguration Under Specific Rules

	Problems and Future Directions
	Quantitative Analysis of the Corruption Parameter τ
	Bootstrapping of New Joined Members
	Security Analysis of New Committees
	Initial Setup of the Protocol

	Motivation Mechanism
	Basic Concepts
	Existing Approaches
	Rewards for block producers and leaders
	Penalties for negative behaviors
	Rewards based on reputation

	Problems and Future Directions
	Specific considerations for sharding blockchains
	Detailed analysis of the motivation mechanism

	Related Work
	Survey on Sharding Blockchain Systems
	Modular Analysis of Sharding Blockchains
	Blockchain Consensus
	Blockchain Scalability

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

